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Abstract. Random numbers are used in a wide range of sciences. In many appli-
cations, generating unpredictable private random numbers is indispensable. Device-
independent quantum random number generation is a framework that makes use of the
intrinsic randomness of quantum processes to generate numbers that are fundamen-
tally unpredictable according to our current understanding of physics. While device-
independent quantum random number generation is an exceptional theoretical feat, the
difficulty of controlling quantum systems makes it challenging to carry out in practice.
It is therefore desirable to harness the full power of the quantum degrees of freedom
(the dimension) that one can control. It is known that no more than 2 log(d) bits of pri-
vate device-independent randomness can be extracted from a quantum system of local
dimension d. In this paper we demonstrate that this bound can be achieved for all di-
mensions d by providing a family of explicit protocols. In order to obtain our result, we
develop new certification techniques that can be of wider interest in device-independent
applications for scenarios in which complete certification (‘self-testing’) is impossible or
impractical.
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1. Introduction

Randomness is an essential resource in many disciplines of science. It is useful for
generating samples for simulation [KGV83] or training data, and various computational
models rely on randomized algorithms [AB09]. For some of these applications, the pri-
vacy of the random numbers is not essential. That is, it is not a problem if third parties
have access to the random numbers. In fact, in some cases deterministic pseudo-random
numbers are advantageous for reproducibility. In other applications, however, truly un-
predictable private random numbers are indispensable. This means that no third party
should be able to a priori guess the random numbers. A prominent application is cryp-
tography, where random numbers are widely used in encryption and decryption schemes
[Sha48]. It is crucial for the security of such cryptographic protocols that these random
numbers are private, and only the encoder and the decoder have access to them. In
particular, no potential eavesdropper should be able to predict these numbers.

Any random number is ultimately generated by some physical process—a roll of a die,
an output of a computer algorithm, atmospheric noise, etc. If this process is described
by classical physics, then the generated number is technically pseudo-random: perfect
knowledge of the initial conditions of the system generating the random numbers makes
it possible to perfectly predict these numbers, due to the deterministic nature of classical
physical laws. Therefore, to generate truly private random numbers, the underlying phys-
ical process must be quantum: the fundamentally probabilistic nature of quantum theory
makes it impossible to predict the outcome of certain quantum mechanical experiments.
Therefore, quantum measurements have the potential to generate private randomness.

Importantly, unpredictability for the user does not necessarily imply private random-
ness, even if quantum mechanical processes were used to generate the random numbers.
Consider the case of generating randomness by measuring the quantum state 1√

2
(|0⟩+|1⟩)

in the basis {|0⟩ , |1⟩}. The outcome of this measurement is a perfectly random bit. How-
ever, the privacy of this bit cannot be guaranteed unless the state and the measurement
are characterized and trusted. Indeed, these measurement statistics are also compatible
with measuring one half of a bipartite state 1√

2
(|0⟩⊗|0⟩+ |1⟩⊗|1⟩) in the basis {|0⟩ , |1⟩}.

An eavesdropper having access to the other half can then perfectly predict the outcome
of this measurement by also measuring in the basis {|0⟩ , |1⟩}, and thus the randomness
is not private.
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The framework that allows for certifying private randomness only from observed
data (without a priori characterization of states and measurements) is called device-
independent quantum random number generation (DIQRNG) [Col07; PAM+10; VV12].
This framework requires the use of a bipartite quantum system, and the private random-
ness of measurements performed on one half of the system can be certified based on the
full bipartite measurement statistics. Crucially, this certification is based only on the
correctness of quantum theory, and on the assumption that the two laboratories mea-
suring the two systems do not leak information (a necessary assumption in any private
randomness certification protocol). Importantly, DIQRNG replaces unverifiable compu-
tational assumptions (often used in classical cryptography [RSA78; Reg09], and in some
quantum protocols [MDC+21; MBB+23]) with information-theoretic security.

Various DIQRNG protocols have been proposed and experimentally demonstrated
[LZL+21; SZB+21; LLR+21], and less secure, device-dependent, variants are also avail-
able commercially [Qua24; Tos24]. One of the main challenges of true DIQRNG is its
resource-intensity. In order to generate private random numbers, high-quality entangled
quantum systems and quantum measurement devices need to be manufactured and op-
erated reliably. We address the fundamental question of how much device-independent
randomness can be generated using fixed quantum resources. Namely, we fix the con-
trollable degrees of freedom—the dimension—of an entangled quantum state. Scaling
up fully controllable dimensions is a major practical challenge in quantum technologies
[AAB+19; MLA+22; AAA+23], and therefore taking full advantage of the available re-
sources is crucial. Importantly, while we are interested in device-independent randomness
that can be generated using systems of a fixed dimension, we do not assume the dimen-
sion of the system in the security proofs. We are simply interested in the certifiable
device-independent randomness if the honest implementation is of a fixed dimension.

It is known that if a bipartite quantum state is locally d-dimensional, a fundamental
upper bound on the certifiable private randomness is 2 log(d) bits1. Apart from the cases
of d = 2 [APV+16] and d = 3 [BJS+22], however, it was previously unknown whether
this fundamental limit can be achieved, and if so, what protocol should be used. In this
work, we fully solve this problem. We show that the fundamental limit of 2 log(d) bits
of private (device-independent) randomness can be extracted from locally d-dimensional
systems in every dimension d. Moreover, our proof is constructive, providing an ex-
plicit protocol that certifies the maximal randomness. The techniques we employ are
similar to self-testing, which is a powerful certification tool in quantum information the-
ory [ŠB20]. While self-testing allows for essentially uniquely identifying quantum states
and measurements from observed experimental statistics, our certification tools allow
for more freedom, certifying only the properties essential for randomness certification.
Furthermore, generating 2 log(d) bits of randomness from locally d-dimensional systems
necessarily requires non-projective measurements2, and therefore standard self-testing
techniques cannot be applied. We believe that our framework opens up new possibilities

1This is the amount of randomness certifiable locally. Global randomness certification is not a straight-
forward extension of local randomness [BJS+22], and this manuscript is primarily concerned with local
randomness.

2As projective measurements in dimension d have at most d outcomes, the randomness from them is
limited to log(d) bits, and this limit can be achieved for every d, see e.g. Ref. [TFR+21].
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Figure 1. Bell scenario including an eavesdropper.

for practical device-independent certification methods in scenarios where self-testing is
too demanding, unnecessary or impossible.

2. Preliminaries

The basic setup of DIQRNG is a so-called bipartite Bell scenario [BCP+14]. Two
experimenters, commonly referred to as Alice and Bob, share a bipartite physical system
and perform various measurements on their respective parts. They repeat the experiment
many times in order to be able to estimate the outcome probabilities of the measurements.
All conclusions of the experiment are drawn from the measurement statistics, and from
the assumptions that quantum theory is correct and Alice’s and Bob’s laboratories do
not leak any information. Crucially, Alice and Bob do not need any prior knowledge of
the physical system or their measurement devices.

In quantum theory, physical systems are associated with a complex Hilbert space
H, which we assume to be finite-dimensional in this work. We will often refer to the
set of matrices (linear operators) on a d-dimensional complex Hilbert space as Md(C).
A bipartite system is associated with a tensor product of two Hilbert spaces, HA ⊗HB,
and the state of the system is described by a positive semidefinite operator ρ on this
Hilbert space with unit trace. Measurements on a Hilbert space are described by positive
operator-valued measures (POVMs), which in our case correspond to a tuple of positive
semidefinite operators that add up to the identity I. In a Bell scenario, Alice has various
measurement settings labeled by x, and the possible outcomes of her measurements are
labeled by a (the number of possible outcomes may depend on x). Similarly, Bob’s
settings are labeled by y and his outcomes by b. An experiment is characterized by
the correlation, that is, the probabilities of Alice observing outcome a and Bob b, upon
choosing measurement settings x and y. According to quantum theory, these probabilities
are given by

p(a, b|x, y) = tr[ρ(Ax
a ⊗By

b )],(2.1)

where ρ is a quantum state on HA ⊗HB, (Ax
a)a is a POVM on HA for all x and (By

b )b is
a POVM on HB for all y.

The aim of DIQRNG is to lower bound the randomness of certain measurement
outcomes from the point of view of a potential eavesdropper, Eve, who holds part of a
tripartite purification of ρ (see Figure 1 for a schematic representation). Moreover, this
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bound must be solely based on the observed correlation. In this work, we are interested
in the asymptotic rate of randomness of the outcome of a single setting x of Alice. This
rate quantifies the randomness of a single measurement outcome of the measurement x,
in the limit of Alice and Bob performing the experiment infinitely many times. Notice
that while this setup is formulated under the assumption that the quantum state and
measurements behave the same way in every experimental round (i.i.d. assumption), this
assumption can be lifted in the asymptotic limit due to the entropy accumulation the-
orem [ADF+18; DFR20]. It is also worth noting that probability estimation techniques
[ZKB18; ZFK20], which have been applied in the previously mentioned experimental
demonstrations [LZL+21; SZB+21; LLR+21], can also be applied to our protocols.

It is well-known [TCR09] that the asymptotic rate of randomness is lower bounded
by the conditional von Neumann entropy H(A|E)ρAE

of the classical-quantum state

ρAE =
∑
a

|a⟩⟨a|A ⊗ trAB[|ψ⟩⟨ψ|(Ax
a ⊗ IB ⊗ IE)],(2.2)

where (Ax
a)a is the POVM describing the measurement for setting x and |ψ⟩ is a purifi-

cation of the state ρ from Eq. (2.1). Note that we denote the classical register (post-
measurement) of Alice by an upright A and the quantum register (pre-measurement)
by an italic A. Since in a device-independent setting the only thing we assume is the
observed correlation, H(A|E)ρAE

needs to be minimized over all possible physical re-
alizations compatible with the observed correlation p(a, b|x, y) or with some function
f [p(a, b|x, y)] of it. That is, the minimization is taken over all possible Hilbert spaces
HA,HB and HE and all states |ψ⟩ ∈ HA⊗HB⊗HE and POVMs (Ax

a)a on HA and (By
b )b

on HB such that

f [p(a, b|x, y)] = f [⟨ψ| (Ax
a ⊗By

b ⊗ IE) |ψ⟩].

In general, this minimization is an extremely difficult task. In certain small and/or
symmetric scenarios, analytic results exist, demonstrating that DIQRNG is possible in
principle [Col07; PAM+10; VV12; ADF+18]. General methods for bounding the rate
of randomness usually rely on numerics [BSS14; BFF21; BFF24], and scale rather badly
with the number of measurement settings and outcomes.

In this work, we analytically carry out the above minimization for a class of cor-
relations. In particular, we are interested in bounding the device-independent random-
ness from certain correlations that arise from measuring a quantum state that is lo-
cally d-dimensional, that is, HA = HB = Cd (note that while we are interested in
correlations generated by locally d-dimensional states, we certify the randomness device-
independently, that is, solely from the observed correlation). It is known that in this
case the maximum possible certifiable device-independent randomness is upper bounded
by 2 log(d) (see [APV+16] for a proof for the min-entropy), and we include a proof of
this fact in Appendix A for completeness (for the von Neumann entropy). We prove that
this fundamental bound can be achieved in every dimension d and we provide explicit
protocols achieving this bound.
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3. Setup and results

Our setup builds on the Bell scenario studied in [TFR+21]. The authors there pro-
pose a DIQRNG protocol and numerically prove that the protocol reaches close to 2 bits
of randomness with locally 2-dimensional systems. For locally 3-dimensional systems, the
authors can numerically certify approximately 3.03 bits of randomness, falling somewhat
short of the fundamental bound 2 log(3) ≈ 3.17. Extending the numerical verification
to larger dimensions is computationally extremely demanding. Moreover, extending the
methods of [TFR+21] to arbitrary dimensions relies on the conjectured existence of sym-
metric informationally complete (SIC) POVMs in every dimension [Zau11].

To overcome previous limitations, we use the family of measurements that we in-
troduce in this work, called balanced informationally complete (BIC) POVMs. Formally,
a BIC-POVM in dimension d is a POVM of the form

(
1
d
Pj

)d2
j=1

, where Pj are rank-1
projections that form a basis for Md(C). Unlike SIC-POVMs, BIC-POVMs exist in ev-
ery dimension (see Appendix B), and may find broad use in other tasks where normally
SIC-POVMs would be useful.

Our Bell scenario is parametrized by an integer d ≥ 2 and a d2×d2 matrix S = (sjk)j,k

that corresponds to a BIC-POVM. Specifically, we let sjk = tr(PjPk) where
(
1
d
Pj

)d2
j=1

is
a BIC-POVM. In our Bell scenario, Alice has d2(d2 − 1)/2 + 1 measurement settings.
The first d2(d2 − 1)/2 settings are labeled by pairs jk such that j, k ∈ [d2] and j < k,
where [n] := {1, . . . , n}, and these measurements have three outcomes each labeled by
a ∈ {1, 2, 3}. The last measurement setting of Alice is labeled by r and this has d2
outcomes labeled by a ∈ [d2]. This is the measurement that Alice uses to generate
randomness. On the other side, Bob has d2 settings with two outcomes each, labeled by
b ∈ {1, 2}.

We introduce a Bell function (a linear function of correlations, equivalently referred
to as a Bell inequality) with the aim that reaching its maximal value certifies the maxi-
mally entangled two-qudit state |φd⟩ := 1√

d

∑d
j=1 |j⟩⊗|j⟩ and a BIC-POVM Ar

j =
1
d
|ej⟩⟨ej|

such that
∣∣⟨ej|ek⟩∣∣2 = sjk for all j, k. The function reads

2
∑
j<k

√
1− sjk

[
p(1, 1|jk, j) + p(2, 1|jk, k)− p(1, 1|jk, k)− p(2, 1|jk, j)

]

−
∑
j<k

(1− sjk)
[
pA(1|jk) + pA(2|jk)

]
− d(d− 2)

d2∑
j=1

pB(1|j)−
d2∑
j=1

p(j, 2|r, j),
(3.1)

where
∑

j<k is short-hand for
∑d2−1

j=1

∑d2

k=j+1, and pA and pB are Alice’s and Bob’s mar-
ginal probabilities, respectively. For an explicit example of our construction in d = 2, see
Example C.1.
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Every Bell function has a corresponding Bell operator, which is an operator-valued
function of POVM elements Ax

a and By
b . In our case, the Bell operator reads

Wd := 2
∑
j<k

√
1− sjk(A

jk
1 − Ajk

2 )⊗ (Bj −Bk)−
∑
j<k

(1− sjk)(A
jk
1 + Ajk

2 )⊗ I

− d(d− 2)
d2∑
j=1

I ⊗Bj −
d2∑
j=1

Ar
j ⊗ (I −Bj),

(3.2)

where we introduced the notation Bj := Bj
1 (and therefore Bj

2 = I − Bj). Note that in
our notation we suppressed the dependence on the S matrix, as well as the fact Wd is a
function of Ax

a and By
b . For a given set of POVMs with elements Ax

a and By
b and a given

bipartite state ρ, the value of the Bell inequality is given by tr(Wdρ).
One common way to show that some β ∈ R is an upper bound on the value of a

Bell inequality is through a sum-of-squares decomposition of the shifted Bell operator
βI −Wd. Specifically, if we can write

(3.3) βI −Wd =
∑
i

Q∗
iQi,

for some operator-valued functions Qi of Ax
a and By

b (assuming that these form valid
POVMs), then we have that for every set of POVMs with elements Ax

a and By
b and for

every quantum state ρ,

(3.4) tr(Wdρ) ≤ β,

which is equivalent to saying that β is an upper bound on the value of the Bell inequality.
The inequality in Eq. (3.4) comes from the fact thatQ∗

iQi is positive semidefinite for every
Ax

a and By
b and that tr(ρ) = 1 for every valid quantum state.

If Eq. (3.4) can be saturated then β is a tight bound. In this case, for every set
of POVMs with elements Ax

a and By
b and every state ρ such that tr(Wdρ) = β it must

hold that Qiρ = 0 for all i. In some cases, these relations make it possible to essentially
uniquely (up to local isometries) identify the quantum state and the POVMs that give
rise to the maximal Bell violation. This is called self-testing, and it is a powerful tool in
device-independent quantum information processing [ŠB20].

Importantly, in our DIQRNG protocol we would like to use a non-projective POVM
(a BIC-POVM), and it is known that non-projective measurements cannot be self-tested
due to Naimark’s dilation theorem [BCK+23]. To certify our setup, we therefore develop
new, weaker forms of self-testing. Based on the maximal value of our Bell inequalities we
characterize the POVMs and the quantum state sufficiently so that we are able to bound
the conditional von Neumann entropy of any state of the form in Eq. (2.2) compatible
with the maximal value. Similar weaker forms of self-testing have been studied recently in
the context of device-independent quantum information processing [Kan20; Far24]. Our
techniques differ from these by certifying measurements compressed onto the local support
of the state (see below), and by using the representation theory of measurement algebras.
Crucially, we do not make any a priori assumptions on the state and measurements
[BCK+23]. Our methods appear to be highly promising for further device-independent
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applications beyond this work, in scenarios in which a complete self-testing statement is
impossible or impractical.

Crucial in our analysis are the local supports of the state ρ ∈ MdA(C)⊗MdB(C). We
define suppA ρ as the range of trB ρ ∈ MdA(C), and suppB ρ in an analogous way. We then
define compressions onto the local supports. On Alice’s Hilbert space, the compression of
an operator X is defined as X̂ := UXU∗, where U : suppA ρ→ CdA is the inclusion, that
is, U∗U is the identity on suppA ρ and UU∗ is the projection on CdA with range suppA ρ.
Compressions on Bob’s Hilbert space are defined analogously, also denoted by X̂. The
intuition behind considering compressed operators is that one cannot certify anything
about the measurements outside the support of the state (the role of compressions onto
the local support in self-testing of operators relative to the state [ŠB20] is elucidated in
[BCK+23]).

The following proposition informally summarizes our certification results based on
the maximal value of our Bell inequalities.

Proposition 3.1. For every integer d ≥ 2 and every S induced by a BIC-POVM, the
maximum quantum value of the corresponding Bell inequality in Eq. (3.2) is d2. Further-
more, if the value d2 is reached using the state and measurements ρ,Ajk

a , A
r
j , B

j, then

i) ρ is supported on a Hilbert space
⊕

α Ceα ⊗Cfα ⊗Crαd ⊗Crαd, where eα, fα, rα ∈ N,
and α is an element of a discrete index set. Up to local isometries, ρ is a mixture of
states of the form ⊕

α

|χα⟩ ⊗ |φrαd⟩ , |χα⟩ ∈ Ceα ⊗ Cfα(3.5)

ii) Alice’s and Bob’s compressed operators satisfy

(Âjk
1 )2 = Âjk

1 , (Âjk
2 )2 = Âjk

2 , Â
jk
1 Â

jk
2 = 0 ∀j < k,(3.6)

(B̂j)2 = B̂j ∀j,(3.7) ∑
j

B̂j = dI,(3.8)

B̂jB̂kB̂j = sjkB̂
j ∀j ̸= k.(3.9)

iii) Up to the same local isometry as for the state, the compressed elements of Alice’s
setting r, acting on

⊕
α Ceα ⊗ Crαd, are given by

(3.10) Âr
j = Nj +

⊕
α

(
Ieα ⊗ 1

d
Ĉj,α +Wj,α

)
where Nj acts on

⊕
α Ceα ⊗Crαd and all of its diagonal (α, α)-blocks are zero. More-

over, we have trCrαd(Wj,α) = 0, and for every α the {Ĉj,α}j operators satisfy the
same relations as the {B̂j}j operators, that is, Eqs. (3.7)–(3.9).

Note that d simply determines the number of inputs and outputs in the Bell in-
equality, and in deriving the maximal value we do not assume that the underlying state
is locally d-dimensional. The proof is based on a sum-of-squares decomposition of the
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shifted Bell operator (Appendix C) and on the representation theory of an algebra related
to the associated BIC-POVM (Appendix D). The proof can be found in Appendix E.

Notice that we do not completely characterize the state up to local isometries. In-
stead, we certify the form in Eq. (3.5). Here, the index α labels the irreducible rep-
resentations of the C*-algebra generated by the relations (3.7), (3.8) and (3.9). Both
suppA ρ and suppB ρ decompose into a direct sum according to the irreducible repre-
sentations, and we characterize the state on these subspaces. Notice in Eq. (3.5) that
in every subspace we find a maximally entangled state of dimension rαd, tensored with
some uncharacterized state |χα⟩.

We also do not fully characterize the POVM (Ar
j)j, as seen in Eq. (3.10). The

characterization is, however, sufficient for certifying randomness. This is because Âr
j

acts trivially on the uncharacterized subspaces and subsystems of ρ, and acts like a
BIC-POVM on the characterized part. Since on the characterized part the state is pure
(|φrαd⟩), no potential eavesdropper can be correlated to the state, since every purification
of a pure state must be a product state. This intuition leads us to our main theorem:

Theorem 3.2. Suppose the state ρ and measurement (Ar
j)j appear in an optimal quantum

strategy for the Bell function (3.2), and let |ψ⟩ ∈ HA ⊗HB ⊗HE be a purification of ρ.
Then

(3.11)
d2∑
j=1

|j⟩⟨j|A ⊗ trAB

[
|ψ⟩⟨ψ|(Ar

j ⊗ IB ⊗ IE)
]
=

 1

d2

d2∑
j=1

|j⟩⟨j|

⊗ σE

for some state σE on HE.
In particular, the maximal value of the Bell inequality (3.2) certifies 2 log(d) bits

of device-independent randomness from the outcome of the setting r of Alice. Since the
maximal violation can be achieved using a locally d-dimensional state, the theoretical
maximum device-independent randomness, 2 log(d) bits, can be achieved in every dimen-
sion d.

The proof of this theorem can be found in Appendix E. The value 2 log(d) comes from
computing the conditional von Neumann entropy of the state in Eq. (3.11). A locally
d-dimensional realization leading to the maximal value d2 is given by ρ = |φd⟩⟨φd|, Bj =

|ej⟩⟨ej|, where {1
d
|ej⟩⟨ej|}d

2

j=1 form a BIC-POVM such that
∣∣⟨ej|ek⟩∣∣2 = sjk, Ajk

1(2) being the
transposition of the projection onto the eigenstate of Bj − Bk with positive (negative)
eigenvalue, and Ar

j = 1
d
|ej⟩⟨ej|t (where all the transpositions are in the computational

basis). In Proposition 3.1, this realization corresponds to a single value for the index
α (let us denote this value by α̃), and eα̃ = fα̃ = rα̃ = 1, Nj = 0, Wj,α̃ = 0, and
Cj,α̃ = |ej⟩⟨ej|t for all j.

4. Discussion

Our main result establishes that the previously known fundamental bound on device-
independent randomness can be achieved in every dimension. To prove this, we designed
explicit protocols that reach the fundamental bound. Since the maximal randomness
requires (by definition) non-projective POVMs, standard self-testing arguments do not
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suffice for proving our result. As such, we developed new, weaker forms of self-testing,
relying on the certification of compressed operators and the representation theory of mea-
surement algebras. We expect our techniques to be highly useful in scenarios in which
a full self-testing statement is not necessary, impossible, or impractical. This is particu-
larly relevant in scenarios where non-projective measurements can be beneficial, or even
optimal—such examples have been found e.g. in Bell non-locality [VB10] and quantum
key distribution [Ben92; Ren04], and thus certifying non-projective measurements may
find applications in these areas.

Let us address the practicality of physical implementations of non-projective mea-
surements. Canonically, these are implemented by enlarging the Hilbert space with an
ancillary system, and performing a joint projective measurement on the system and an-
cilla. As such, one might question whether our protocol is truly locally d-dimensional.
Notice that importantly, the ancillary system is not shared between Alice and Bob but
held only by Alice. Therefore, the entangled state is only locally d-dimensional. More-
over, in various standard physical implementations (e.g. spatial modes of photons) the
ancillary system is purely a mathematical model, and there is no need to introduce an
actual new physical system (e.g. a new photon) to implement a non-projective measure-
ment [GTZ+23; GLV+24]. Therefore, in the sense of ‘controllable degrees of freedom’,
our protocol can indeed be implemented using locally d dimensions.

Further regarding the practicality of our setup, one might notice that while the
protocol generates 2 log(d) bits every time Alice measures r, she has in total d2(d2 −
1)/2+1 measurement settings, which need to be chosen randomly. Notice, however, that
these settings do not need to be chosen uniformly randomly. If Alice selects the setting
r most of the time, she can generate arbitrarily close to 2 log(d) bits of randomness
per measurement round. That is, she does not consume more randomness than what is
generated. In fact, Alice only needs to consume a vanishing amount of randomness per
measurement round. This approach is usually referred to as a spot-checking protocol
[CVY13; MS17; LLR+21] and has been used in experimental demonstrations [LZL+21;
SZB+21].

Our work opens up a couple of important future research directions, on top of the
wider application of our certification methods. Following the discussion about the prac-
ticality, it would be desirable to work out the robustness of our protocol to experimental
noise. This is a particularly promising research direction, since our protocol works with
systems of arbitrary dimension, and it is known that systems of larger dimension could
be more robust to noise [ZTV+21; DHM+21]. Moreover, the large freedom in the mea-
surements (any BIC-POVM provides maximal randomness) provides ample potential
candidate protocols. Since our certification is based on a Bell inequality (with quan-
tifiable classical-quantum separation, see Appendix F), one possible avenue is to adapt
robust self-testing techniques [BLM+09; YVB+14; Kan16; MPS24] to our certification
methods. While it is plausible that this avenue is successful, quantifying the effect of noise
on the representation-theoretic certification likely requires significant technical effort. As
such, we leave the noise robustness quantification for a future study. Similarly, extending
our analysis to the case of finite statistics is also of practical relevance, and should be the
subject of a future work. At the same time, we note that numerical evidence supports the
robustness of our protocols: for the SIC-POVM case in d = 2 and d = 3, Ref. [TFR+21]
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contains semidefinite programming-based bounds on the min entropy in terms of the Bell
inequality volation.

It would also be an interesting follow-up direction to figure out whether our protocols
can be extended to certify maximal global device-independent randomness. That is,
2 log(d) bits on Alice’s side and 2 log(d) bits on Bob’s side. Proving this would require
extending our certification methods to a new setting on Bob’s side, corresponding to a
BIC-POVM.

Last, the algebraic characterization of BIC-POVMs in Appendix B and G could
provide new mathematical insights into the structure and famous existence problem of
SIC-POVMs [Zau11], as SIC-POVMs are a class of BIC-POVMs. Further research into
this algebraic characterization could also lead to other device-independent applications,
similarly to what has been achieved with mutually unbiased measurements [TFR+21;
CMF+22; FKN23].

Data availability

This work does not have any associated data.
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APPENDICES

A. Fundamental bound on the device-independent randomness

The fundamental bound of 2 log(d) bits of device-independent randomness from lo-
cally d-dimensional states can be argued by considering extremal POVMs. In a fixed
dimension, the set of POVMs forms a convex set. That is, one can take a convex combina-
tion of a POVM (M1, . . . ,Mm) and (N1, . . . , Nm), given by (λM1+(1−λ)N1, . . . , λMm+
(1 − λ)Nm), which is again a POVM for every λ ∈ [0, 1]. Furthermore, one can take
convex combinations of POVMs with different numbers of outcomes, by appropriately
padding the POVMs with zero operators. The set of POVMs endowed with this con-
vex structure thus has extremal elements—POVMs that cannot be written as a non-
trivial convex combination of two other POVMs. It is known from [DPP05] that ex-
tremal POVMs in dimension d can have at most d2 non-zero elements. Consider then
a correlation p(a, b|x, y) = tr[(Ax

a ⊗ By
b )ρ] that can be realized in dimension d. In par-

ticular, by some locally d-dimensional entangled state ρ, and d-dimensional POVMs
{(Ax

a)a}x for Alice and {(By
b )b}y for Bob. All POVMs decompose into extremal ones.

In particular, for the POVM (Ax
a)a which we use for randomness extraction, we have

Ax
a =

∑k−1
e=0 peA

x,e
a , where {pe}e is a probability distribution and {(Ax,e

a )a}e are ex-
tremal POVMs and therefore have at most d2 non-zero elements. Another realiza-
tion of p(a, b|x, y) is then given on the Hilbert space

⊕k−1
e=0 Cd ⊗ Cd. The realization

consists of a locally kd-dimensional state ρ′ =
⊕k−1

e=0 peρ and kd-dimensional POVMs
(Ãx

a)a =
(⊕k−1

e=0 A
x,e
a

)
a

and (B̃y
b )b =

(⊕k−1
e=0 B

y
b

)
b
. A tripartite extension of ρ′ is given by

ρ̃ =
∑k−1

e=0 peρe⊗|e⟩⟨e|, where ρe equals ρ on the e-th copy of Cd⊗Cd and zero elsewhere,
and {|e⟩}k−1

e=0 is an orthonormal basis on Eve’s Hilbert space. While we could in principle
consider a purification of ρ̃ to be fully consistent with (2.2), we will keep this mixed
state for simplicity. Given this quantum realization of our observed correlation and the
tripartite extension, the minimization of H(A|E)ρAE

is upper bounded by H(A|E)ρ̃AE
,

where

ρ̃AE =
∑
a

|a⟩⟨a|A ⊗ trAB[ρ̃(Ã
x
a ⊗ IB ⊗ IE)]

=
∑
a

|a⟩⟨a|A ⊗

k−1∑
e=0

pe tr
(
ρ(Ax,e

a ⊗ IB)
)
|e⟩⟨e|

 .

The conditional entropy of this state is given by the conditional entropy of the classical
distribution q(a, e) = pe tr

(
ρ(Ax,e

a ⊗ IB)
)
. That is,

H(A|E)ρ̃AE
=

k−1∑
e=0

peH(A|E = e) =
k−1∑
e=0

peH

({
tr
(
ρ(Ax,e

a ⊗ IB)
)}

a

)
≤

k−1∑
e=0

pe log(d
2)

= 2 log(d),
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where (with a slight abuse of notation) H
({

tr
(
ρ(Ax,e

a ⊗ IB)
)}

a

)
is the Shannon en-

tropy of the distribution
{
tr
(
ρ(Ax,e

a ⊗ IB)
)}

a
, which is upper bounded by log(d2) due

to the fact that at most d2 elements of (Ax,e
a )a are non-zero. The theoretical maximum

device-independent randomness certifiable using locally d-dimensional states is therefore
2 log(d).

B. Balanced informationally complete POVMs

In this section we review the notion of (finite-dimensional) informationally complete
POVMs and their construction following [DPS04; DPP05], and identify a sub-family of
them that is the pillar of the scenario designed in this paper. Throughout the paper,
given a matrix a we write a∗, at and a to denote its conjugate transpose, transpose and
complex conjugate, respectively.

If elements of a POVM, M1, . . . ,Mm on Cd, span Md(C), then (Mj)
m
j=1 is an infor-

mationally complete POVM (IC-POVM) on Cd (note that m ≥ d2 in this case). By
[DPP05, Corollary 6], extremal d2-outcome POVMs on Cd are IC-POVMs and consist of
rank-one matrices. In this paper we focus on a special family of d2-outcome rank-one IC-
POVMs on Cd. A balanced IC-POVM (BIC-POVM) on Cd is (1

d
Pj)

d2

j=1 where P1, . . . , Pd2

are rank-one projections that form a basis for Md(C), and satisfy
∑d2

j=1 Pj = dI. In the
language of harmonic analysis, rank-one projections adding to a scalar multiple of the
identity correspond to unit-norm tight frames [Wal18, Section 2]. For a parameterization
of all BIC-POVMs on C2, see the first part of Example F.2 below.

Lemma B.1. Let (1
d
Pj)j be a BIC-POVM on Cd. Then the d2 × d2 matrix S =

(tr(PjPk))j,k is positive definite, sjj = 1 for all j, 0 ≤ sjk < 1 for all j ̸= k, and∑
j sjk = d for all k.

Moreover, for every pair (j, k) there exists a sequence j = i1, . . . , iN = k in [d2] such
that sinin+1 ̸= 0 for all n = 1, . . . , N − 1.

Proof. The matrix S is the Gram matrix of the basis P1, . . . , Pd2 with respect to the
Frobenius inner product on Md(C), and therefore positive definite. Since the Pj are rank-
one projections, the diagonal entries of S equal 1. The off-diagonal entries of S lie in
[0, 1) by the Cauchy-Schwarz inequality and linear independence of the Pj. Furthermore,
for every k we have

d2∑
j=1

sjk =
d2∑
j=1

tr(PjPk) = tr


 d2∑

j=1

Pj

Pk

 = d.

To prove the last part of the statement, consider the connectivity graph of S, i.e., the
graph with vertices [d2], where there is an edge between j and k if and only if sjk ̸= 0.
The assertion that we wish to prove is then equivalent to saying that any two vertices in
this graph can be connected by a path. Suppose this is not true; then, the connectivity
graph is not connected. One can then relabel its vertices in such a way that no vertex
in {1, . . . ,m} has an edge to a vertex in {m + 1, . . . , d2}, for some 1 ≤ m < d2. This
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means that PjPk = 0 for all j ≤ m and k > m. Let V = ranP1 + · · · + ranPm. Then,
ranPm+1 + · · ·+ ranPd2 ⊆ V ⊥, and in particular V ̸= {0} and V ̸= Cd. If S ∈ Md(C) is
any matrix that maps a nonzero vector from V to a nonzero vector from V ⊥ (and such
S exists since V is a proper subspace of Cd), then such S cannot be a linear combination
of Pj (because the first m of them map V to V , and the rest map V to {0}). This
contradicts the assumption that the Pj span the whole Md(C). □

The matrix S in Lemma B.1 is said to be induced by the BIC-POVM. Its properties
from Lemma B.1 are utilized frequently throughout the paper. In particular, the last
part of Lemma B.1 asserts that while there may be zero entries in S, there cannot be too
many; this is crucially used in Propositions D.1 and F.1.

To show the existence of IC-POVMs it is common to use group-theoretic tools
[DPS04]. Consider the unitary projective representation of Zd × Zd on P(Cd) given
by the Weyl operators, i.e.,

Up,q =
d−1∑
j=0

ωjq|j ⊕ p⟩⟨j| for (p, q) ∈ Zd × Zd

where ω := e
2πi
d is the principal dth root of unity and ⊕ is addition modulo d. If |ψ⟩ ∈ Cd

is a unit vector then

(Mp,q)(p,q)∈Zd×Zd
, where Mp,q :=

1
d
Up,q|ψ⟩⟨ψ|U∗

p,q(B.1)

is a rank-one POVM. If furthermore |ψ⟩ satisfies

⟨ψ|Up,q |ψ⟩ ≠ 0 for all p, q ∈ Zd,(B.2)

then (Mp,q)(p,q) is a rank-one IC-POVM by [DPS04, Section 3], and furthermore a BIC-
POVM. Notice that if we consider an arbitrary state |ψ⟩ =

∑d−1
j=0 ψj |j⟩, where {|j⟩}d−1

j=0

is the standard orthonormal basis on Cd, and we define the subnormalized vector |ψp⟩ :=∑d−1
j=0 ψj⊕pψj |j⟩, then

⟨ψ|Up,q |ψ⟩ =
d−1∑

i,j,k=0

ωjqψkψi ⟨i|j ⊕ p⟩ ⟨j|k⟩ =
d−1∑
j=0

ωjqψj⊕pψj = ⟨q| Fd |ψp⟩

where Fd denotes the quantum Fourier transform. The requirement (B.2) thus becomes

⟨q| Fd |ψp⟩ ≠ 0 for all p, q ∈ Zd.

To construct BIC-POVMs on Cd for every d ∈ N, we thus need to identify some unit
vectors |ψ⟩ ∈ Cd satisfying the condition (B.2). In [DPS04; DPP05] it is asserted that
states of the form |ψ⟩ ∝

∑
k α

k |k⟩, where α ∈ C and |α| < 1, fulfill the requirement
(B.2). This assertion, however, needs some amendments: if d is even and α ∈ R, then
|ψ⟩ =

∑
k α

k |k⟩ satisfies ⟨ψ|Ud/2,1 |ψ⟩ = 0 by a direct calculation. Thus we present the
following sufficient criterion for |ψ⟩ to satisfy (B.2).

Proposition B.2. Let d ∈ N, r ∈ (0, 1
2
), and t ∈ R if d is odd and t ∈ R \ 1

2d
Z if d is

even. Then |ψ⟩ =
∑d−1

k=0 α
k |k⟩ with α = re2πit satisfies ⟨ψ|Up,q |ψ⟩ ≠ 0 for all p, q ∈ Zd.
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Proof. We expand

⟨ψ|Up,q |ψ⟩ =
d−1∑
k,ℓ=0

∑
j∈Zd

ωjqαkαℓ ⟨k|j ⊕ p⟩⟨j|ℓ⟩

=
∑

ℓ≤d−1−p

ωℓqαℓ+pαℓ +
∑

ℓ≥d−p

ωℓqαℓ+p−dαℓ

= e−2πipt

 ∑
ℓ≤d−1−p

r2l+pe2πi
ℓq
d +

∑
ℓ≥d−p

r2l+p−de2πi(
ℓq
d
+dt)

 .

Therefore it suffices to see that

(B.3)
∑

ℓ≤d−1−p

r2l+pe2πi
ℓq
d +

∑
ℓ≥d−p

r2l+p−de2πi(
ℓq
d
+dt)

is nonzero for every p, q ∈ Zd. We shall reach this conclusion by observing that the
largest absolute value of a term in (B.3) strictly dominates the sum of the other absolute
values. Note that the largest absolute value equals rm where m = min{p, d− p}, and the
smaller absolute values belong to {rm+1, rm+2, . . . } if d is odd and to {rm+2, rm+4, . . . } if
d is even.

First assume that d is odd. Observe that the absolute values of terms in (B.3) are
pairwise distinct. Since r < 1

2
implies

rm+1 + rm+2 + · · · < r

1− r
rm < rm,

we see that (B.3) is nonzero. Now assume that d is even. Then the absolute values of
terms in (B.3) are not all pair-wise distinct; rather, some appear once and others appear
twice. If two terms in (B.3) have the same absolute value, then one appears in the first
sum and the other appears in the second sum, and the difference of their arguments is
2π( q

2
+ dt). Observe that q

2
+ dt /∈ 1

2
Z for every q ∈ {0, . . . , d − 1} by the assumption

on t. In particular, z = e2πi(
q
2
+dt) satisfies |z| = 1, z ̸= −1 and z is a ratio of any distinct

two terms in (B.3) with the same absolute value. Since r < 1
2
< 1√

3
, we have

(B.4) 2(rm+2 + rm+4 + · · · ) ≤ 2r2

1− r2
rm < rm.

If d ̸= 2p, then rm appears once as an absolute value in (B.3), and the sum of other
absolute values in (B.3) is strictly smaller than rm by (B.4), so (B.3) is nonzero. If
d = 2p, then all the absolute values of terms in (B.3) appear precisely twice, with the
constant ratio z ̸= −1. Thus, (B.3) becomes (1 + z)(rmeiα0 + rm+2eiα2 + rm+4eiα4 + · · · )
for some angles αj, and this expression is nonzero by (B.4). □

By Proposition B.2, there exists a state in Cd satisfying (B.2), for every d ∈ N. Since
(B.2) is a topologically open condition, in fact a generic state in Cd satisfies (B.2). Thus
(B.1) can be used to produce a BIC-POVM from almost any state, which can then be
employed in the scenario presented in Section C.

Finally, for the sake of completeness, let us comment on the connection to a famous
open problem in quantum information theory, i.e., the existence problem of symmetric
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A

r

a′ ∈ [d2]

jk : 1 ≤ j < k ≤ d2

a ∈ {1, 2, 3}

B

y ∈ [d2]

b ∈ {1, 2}

E

|ψ⟩

ρ = trE |ψ⟩⟨ψ|

Figure 2. The Bell scenario with malicious eavesdropper Eve who is try-
ing to guess Alice’s outcome of her setting r.

IC-POVMs (SIC-POVMs). It is straightforward to show that if∣∣⟨q| Fd |ψp⟩
∣∣2 = 1

d+ 1
for all (p, q) ̸= (0, 0),(B.5)

then (B.1) is a SIC-POVM. Zauner famously conjectured in [Zau11] that SIC-POVMs
exist in every finite dimension d. A state that fulfills (B.5) is called a fiducial vector
and the SIC-POVM it induces is called covariant with respect to Zd × Zd. Hence, one
way to confirm Zauner’s conjecture is to show the existence of fiducial vectors in every
dimension. Fiducial vectors have been obtained in every dimension up to 67 [SG10].
Due to their uniform properties, SIC-POVMs have been widely used to design proto-
cols in quantum information theory, for example for quantum key distribution [Ren05],
quantum state tomography [BQT+15], entanglement detection [SAZ+18], certification of
non-projective measurements [TRR19], and random number generation [TFR+21]. On
the other hand, the protocol of this paper relies on more general BIC-POVMs, whose
existence is unproblematic (in contrast to SIC-POVMs).

C. A Bell inequality

In this paper we investigate a variation of the scenario presented in [TFR+21]. For
any integer d ≥ 2, we consider the following Bell scenario (see Figure C). Alice has
d2(d2 − 1)/2 + 1 measurement settings, where the first d2(d2 − 1)/2 settings have 3
outcomes, and the last one has d2 outcomes. The first d2(d2 − 1)/2 settings are labaled
by pairs jk such that j, k ∈ [d2] and j < k. The last of Alice’s settings is labeled r. We
label the outcomes of the 3-outcome measurements by a ∈ {1, 2, 3} and the outcome of
the measurement r by j ∈ [d2]. On the other side, Bob has d2 measurement settings with
two outcomes each, where the outcomes are labeled by b ∈ {1, 2}.

The overall goal in this paper is to show that the outcome of Alice’s setting r is un-
predictable for any eavesdropper Eve. We reach this conclusion in the device-independent
setting, relying only on the observed correlation in the Bell scenario. We do this by con-
structing a Bell inequality whose maximal violation certifies certain desired properties of
the measurements and the shared state. Since we aim to certify randomness coming from
non-projective measurements, a fully assumption-free self-testing statement is impossible
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[BCK+23, Theorem C]. As we will see, however, the maximal violation of our Bell in-
equality will certify enough about the state and the measurements to conclude that Eve
cannot predict the outcome of Alice’s measurement r better than a random guess.

We first simply state the Bell inequality, then the corresponding Bell operator and
some intuition for why we chose this Bell inequality, in terms of the Bell operator. The
inequality depends on d and on a fixed BIC-POVM coming from unit vectors {|ej⟩}d

2

j=1.
The inequality depends on the parameters sjk =

∣∣⟨ej|ek⟩∣∣2 (i.e., the entries of the matrix
S from Lemma B.1), and is given by

2
∑
j<k

√
1− sjk

[
p(1, 1|jk, j) + p(2, 1|jk, k)− p(1, 1|jk, k)− p(2, 1|jk, j)

]

−
∑
j<k

(1− sjk)
[
pA(1|jk) + pA(2|jk)

]
− d(d− 2)

d2∑
j=1

pB(1|j)−
d2∑
j=1

p(j, 2|r, j)
(C.1)

where we use the shorthand notation
∑

j<k =
∑d2−1

j=1

∑d2

k=j+1. A quantum strategy for
the above game consists of two finite-dimensional Hilbert spaces HA and HB, a bipartite
state ρ on HA ⊗ HB given as a density matrix, POVMs (Ajk

1 , A
jk
2 , I − Ajk

1 − Ajk
2 ) for

j < k ∈ [d2] and (Ar
1, . . . , A

r
d2) on HA (Alice’s measurements), and POVMs (Bj, I −Bj)

for j ∈ [d2] on HB (Bob’s measurements). The corresponding Bell operator is given by

Wd := 2
∑
j<k

√
1− sjk(A

jk
1 − Ajk

2 )⊗ (Bj −Bk)−
∑
j<k

(1− sjk)(A
jk
1 + Ajk

2 )⊗ I

− d(d− 2)
d2∑
j=1

I ⊗Bj −
d2∑
j=1

Ar
j ⊗ (I −Bj),

(C.2)

and the value attained by this quantum strategy is tr(Wdρ). Note that Wd depends on
the choice of a d-dimensional BIC-POVM, and not just on d; however, we index it with
d because its maximal quantum value depends on d only, as seen in the remainder of
the section. In the following, we will often omit the tensor products with the identity
operator in the notation if it does not cause confusion. That is, we write Ajk

a instead of
Ajk

a ⊗ I and Bj instead of I ⊗Bj.
The intuition for this Bell inequality comes from the aim of certifying a d-dimensional

reference strategy (see section C.1). In this strategy, we use the maximally entangled
state |φd⟩, and the Bj operators are rank-1 projections, and therefore Bj −Bk is rank-2.
In order to certify this operator, we set Ajk

1(2) to be the transposition of the projection onto
the positive (negative) eigenvalue of (Bj −Bk). Since the dimension is in general greater
than 2, Alice’s jk measurement must have a third outcome, occupying the remaining d−2
dimensions of her Hilbert space. That this third outcome occurs is enforced by the second
term inWd, penalizing Alice for outputting 1 or 2. The last term inWd ensures correlation
between Alice’s measurement labeled by r and Bob’s measurements. Specifically, in order
to reach a large violation, if Alice chooses setting r and observes outcome j, then Bob,
when simultaneously choosing setting j, should always observe outcome 2. The overlaps
between Bob’s measurements are certified using the sjk dependence in the coefficients
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in Wd. The precise form of these coefficients is a result of a simple sum-of-squares
decomposition (see section C.2).

C.1. Reference strategy. We now consider a reference strategy in the quantum model
reaching a score of d2. Afterwards we proceed to show that d2 is indeed optimal. Let
Alice and Bob share the canonical maximally entangled state

|φd⟩ :=
1√
d

d−1∑
k=0

|kk⟩ .

Bob’s measurements are given by B̃j := |ψ̃j⟩⟨ψ̃j|, where {ψ̃j}j are unit vectors inducing
the BIC-POVM. Now, the operator B̃j − B̃k for j ̸= k is traceless, rank 2 and Hermitian.
Hence, it has a spectral decomposition of the form

B̃j − B̃k = γ(|ajk1 ⟩⟨ajk1 | − |ajk2 ⟩⟨ajk2 |)

where |ajk1 ⟩ , |ajk2 ⟩ are orthogonal unit vectors and γ ∈ (0, 2). Furthermore,

2γ2 = tr
(
(B̃j − B̃k)2

)
= tr

(
B̃j + B̃k − B̃jB̃k − B̃kB̃j

)
= 2− 2sjk

so γ =
√

1− sjk. Let Alice’s POVM associated with her 3-output measurement be given
by Ãjk

1 := (|ajk1 ⟩⟨ajk1 |)t, Ãjk
2 := (|ajk2 ⟩⟨ajk2 |)t and Ãjk

3 := (I − |ajk1 ⟩⟨ajk1 | − |ajk2 ⟩⟨ajk2 |)t. Notice
in particular that we have the relations

B̃j − B̃k =
√

1− sjk(Ã
jk
1 − Ãjk

2 )t

(B̃j − B̃k)2 = (1− sjk)(Ã
jk
1 + Ãjk

2 )t
(C.3)

Moreover, let Ãr
j :=

1
d
(B̃j)t.

Recall that since |φd⟩ is the canonical maximally entangled state we have for any
X ∈ Md(C) that X ⊗ I |φd⟩ = I ⊗ Xt |φd⟩. Then ⟨φd|Wd |φd⟩, the value of the Bell
function (C.1) at this strategy,

2
∑
j<k

√
1− sjk ⟨φd| (Ãjk

1 − Ãjk
2 )⊗ (B̃j − B̃k) |φd⟩ −

∑
j<k

(1− sjk) ⟨φd| (Ãjk
1 + Ãjk

2 ) |φd⟩

− d(d− 2)
d2∑
j=1

⟨φd| I ⊗ B̃j |φd⟩ −
d2∑
j=1

⟨φd| Ãr
j ⊗ (I − B̃j) |φd⟩ ,

reduces to ∑
j<k

⟨φd| I ⊗ (B̃j − B̃k)2 |φd⟩ − d2(d− 2) ⟨φd| I ⊗ I |φd⟩

= 1
d

∑
j<k

tr[(B̃j − B̃k)2]− d2(d− 2) =
2

d

∑
j<k

(1− sjk)− d2(d− 2)

using the relations (C.3),
∑

j B̃
j = dI and (Ãr

j)
t(I − B̃j) = 0. The sum

∑
j<k sjk is given

by the sum of the upper triangle of the matrix S induced by the initial BIC-POVM. By
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Lemma B.1 we have
∑

j<k sjk =
d3−d2

2
so ⟨φd|Wd |φd⟩ further simplifies to

2

d

(
d4 − d2

2
− d3 − d2

2

)
− d2(d− 2) = d2,

as desired.
Let us illustrate our construction with an explicit example generated by a BIC-POVM

in d = 2.

Example C.1. Let us fix d = 2 and the BIC-POVM defined by

P1 =

(
1 0
0 0

)
, P2 =

(
1
2

−1
2

−1
2

1
2

)
,

P3 =

(
1
4

1
4
+ i 1

2
√
2

1
4
− i 1

2
√
2

3
4

)
, P4 =

(
1
4

1
4
− i 1

2
√
2

1
4
+ i 1

2
√
2

3
4

)
,

which leads to the S matrix

S =


1 1

2
1
4

1
4

1
2

1 1
4

1
4

1
4

1
4

1 1
2

1
4

1
4

1
2

1


(note that this is a specific case of Example F.2 with t1 = t2 =

1
4
). The Bell function is

then given by
√
2
[
p(1, 1|12, 1) + p(2, 1|12, 2)− p(1, 1|12, 2)− p(2, 1|12, 1)

]
− 1

2

[
pA(1|12) + pA(2|12)

]
+
√
3
[
p(1, 1|13, 1) + p(2, 1|13, 3)− p(1, 1|13, 3)− p(2, 1|13, 1)

]
− 3

4

[
pA(1|13) + pA(2|13)

]
+
√
3
[
p(1, 1|14, 1) + p(2, 1|14, 4)− p(1, 1|14, 4)− p(2, 1|14, 1)

]
− 3

4

[
pA(1|14) + pA(2|14)

]
+
√
3
[
p(1, 1|23, 2) + p(2, 1|23, 3)− p(1, 1|23, 3)− p(2, 1|23, 2)

]
− 3

4

[
pA(1|23) + pA(2|23)

]
+
√
3
[
p(1, 1|24, 2) + p(2, 1|24, 4)− p(1, 1|24, 4)− p(2, 1|24, 2)

]
− 3

4

[
pA(1|24) + pA(2|24)

]
+
√
2
[
p(1, 1|34, 3) + p(2, 1|34, 4)− p(1, 1|34, 4)− p(2, 1|34, 3)

]
− 1

2

[
pA(1|34) + pA(2|34)

]
−

4∑
j=1

p(j, 2|r, j),

(notice that the second to last term in the expression (C.1) vanishes when d = 2).

C.2. Sum-of-squares decomposition of the Bell inequality. In order to show that
d2 is the maximal quantum value of (C.1), or equivalently, a tight upper bound on the
eigenvalues of the Bell operator Wd, we will need the following technical lemma.

Lemma C.2. Let X, Y ⪰ 0 satisfy X+Y ⪯ I. Then X+Y −(X−Y )2 ⪰ 0. Furthermore,
equality holds if and only if X, Y are projections orthogonal to each other.
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Proof. The inequality follows from rewriting X + Y − (X − Y )2 as

(I −X + Y )X(I −X + Y ) + (I +X − Y )Y (I +X − Y ) + (X − Y )(I −X − Y )(X − Y ),

where all three terms are positive semidefinite by construction.
Now suppose X, Y ⪰ 0, X+Y ⪯ I and X+Y − (X−Y )2 = 0. The above certificate

for positive semidefinitenss of X + Y − (X − Y )2 implies

(I −X + Y )X = 0, (I +X − Y )Y = 0.

In particular, XY is hermitian, so X and Y commute. Therefore they are jointly diago-
nalizable, with corresponding diagonal entries xi and yi, which satisfy for all i

(C.4) xi, yi ≥ 0, xi + yi ≤ 1, (1− xi + yi)xi = 0, (1 + xi − yi)yi = 0.

A direct calculation shows that the solutions of (C.4) for a fixed i are (0, 0), (1, 0), (0, 1).
Therefore, X and Y are projections and XY = 0. □

Proposition C.3. For any integer d ≥ 2 and any choice of POVMs {Ajk
a }jk, {Ar

j} and
{Bj} in the above scenario, we have

d2I −Wd ⪰ 0.

Proof. Let

Θd :=
∑
j<k

[√
1− sjk(A

jk
1 − Ajk

2 )− (Bj −Bk)
]2

+

dI − d2∑
j=1

Bj

2

+
d2∑
j=1

Ar
j ⊗ (I −Bj) + d2

d2∑
j=1

(
Bj − (Bj)2

)
+
∑
j<k

(1− sjk)

[
Ajk

1 + Ajk
2 −

(
Ajk

1 − Ajk
2

)2]
.

(C.5)

The goal is to show that Wd +Θd = d2I and Θd ⪰ 0. First notice that if we expand the
square in the first term of Θd we get[√

1− sjk(A
jk
1 − Ajk

2 )− (Bj −Bk)
]2

=(1− sjk)(A
jk
1 − Ajk

2 )2 − 2
√

1− sjk(A
jk
1 − Ajk

2 )⊗ (Bj −Bk)

+
[
(Bj)2 + (Bk)2 − {Bj, Bk}

]
.

(C.6)

The second term on the right hand side of Eq. (C.6) cancels with the first term of Wd in
(C.2). The first term on the right hand side of Eq. (C.6) cancels with the last part of the
last term of Θd. Notice also that the second term of Wd in (C.2) cancels with the first
part of the last term of Θd, and that the terms involving Ar

j also cancel. Altogether we
have reduced Wd +Θd to

∑
j<k

[
(Bj)2 + (Bk)2 − {Bj, Bk}

]
+

dI − d2∑
j=1

Bj

2

+ d2
d2∑
j=1

(
Bj − (Bj)2

)
− d(d− 2)

d2∑
j=1

Bj.
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Using the fact that

∑
j<k

[
(Bj)2 + (Bk)2

]
= 1

2

 d2∑
j,k=1

[
(Bj)2 + (Bk)2

]
− 2

d2∑
ℓ=1

(Bℓ)2

 = (d2 − 1)
d2∑
j=1

(Bj)2,

we get

(d2 − 1)
d2∑
j=1

(Bj)2 −
∑
j<k

{Bj, Bk}+

dI − d2∑
j=1

Bj

2

+ d2
d2∑
j=1

[
Bj − (Bj)2

]
− d(d− 2)

d2∑
j=1

Bj.

(C.7)

Expanding the third term leads todI − d2∑
j=1

Bj

2

= d2I +
d2∑

j,k=1

BjBk − 2d
d2∑
j=1

Bj

= d2I +
d2∑
j=1

(Bj)2 +
∑
j<k

{Bj, Bk} − 2d
d2∑
j=1

Bj,

(C.8)

where we have used

d2∑
j,k=1

BjBk =
∑
j

(Bj)2 +
∑
j<k

{Bj, Bk}.

Upon inserting Eq. (C.8) in the expression (C.7), one obtains d2I after a straightforward
simplification. We have thus shown d2I −Wd = Θd.

Notice that the first two terms of Θd are squares of Hermitian operators which means
that they are positive semidefinite. The third and the fourth terms are also positive
semidefinite which follows from the fact that the operators form POVMs. It follows by
Lemma C.2 that the last term of Θd is positive semidefinite as well. We conclude that
Θd is positive semidefinite and therefore d2I −Wd ⪰ 0, as desired. □

D. Representation-theoretic auxiliaries

Before analyzing strategies where the Bell function (C.1) attains the maximal quan-
tum value d2, we require a few intermediate results on operators satisfying the funda-
mental relations of BIC-POVMs, and a decomposition of states into maximally entangled
ones. These results are obtained using techniques from C*-algebras and representation
theory (for the general theory, see [Tak02] and [Pro07]), and might be of independent
interest.
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D.1. A relevant C*-algebra. This subsection introduces a C*-algebra whose represen-
tations lurk behind optimal strategies for the scenario in Section C. Let us first recall the
necessary terminology on C*-algebras [Tak02, Chapter 1].

A unital C*-algebra A is a complex algebra with identity, an involution ∗ and a
submultiplicative norm ∥ · ∥, such that A is a complete normed space and ∥a∗a∥ = ∥a∥2
for all a ∈ A. A representation of A on a Hilbert space H is a map π : A → B(H),
where B(H) are bounded operators on H, that is additive, multiplicative, and respects
∗ (in other words, it is a ∗-homomorphism). When dimH = D < ∞, we identify B(H)
with MD(C), say that π is finite-dimensional, and write dim π = D. A representation
π : A → B(H) is irreducible if there is no closed subspace {0} ≠ K ⊂ H such that
π(a)K ⊆ K for all a ∈ A. Given two representations π : A → B(H) and π′ : A → B(H′),
a homomorphism from π to π′ is an operator W : H → H′ such that π′(a)W = Wπ(a)
for all a ∈ A. If there exists a unitary homomorphism from π to π′, then π and π′ are
unitarily equivalent. Roughly speaking, unitarily equivalent representations are “equal”
up to a unitary change of coordinates.

Finally, given a tuple (a1, . . . , am) of self-adjoint operators on H, we say that the
tuple is irreducible if there is no subspace {0} ≠ K ⊂ H such that ajK ⊆ K for all j. If
(b1, . . . , bm) is another tuple of self-adjoint operators on H′, then an operatorW : H → H′

such that bjW = Waj for all j is called a homomorphism from (aj)j to (bj)j. This slight
abuse of terminology is tailored to thinking of operator tuples in terms of C*-algebras
they generate.

Let S ∈ Md2(R) be a matrix induced by a BIC-POVM. With it we associate the
universal unital C*-algebra

AS = C∗
〈
x1, . . . , xd2 : xj = x∗j = x2j ∀j,

d2∑
j=1

xj = d, xjxkxj = sjkxj ∀j, k
〉
,

that is, the “most general” C*-algebra generated by x1, . . . xd2 satisfying the above rela-
tions. Without invoking the subtleties of the full definition of a universal C*-algebra
[Bla06, Section II.8.3], we can nevertheless precisely characterize its representations.
Namely, a representation π of AS on H corresponds to an ensemble of d2 projections
π(x1), . . . , π(xd2) ∈ B(H) that add up to d times identity, and satisfy π(xj)π(xk)π(xj) =
sjkπ(xj).

Proposition D.1. Let π be a finite-dimensional representation of AS. Then dim π is
divisible by d, trπ(xj) = dimπ

d
for all j, and π(x1), . . . , π(xd2) are linearly independent.

Proof. Denote Xj = π(xj). For all j ̸= k we have sjk tr(Xj) = tr(XjXk) = sjk tr(Xk),
and thus tr(Xj) = tr(Xk) whenever sjk ̸= 0. By Lemma B.1 it follows that tr(X1) =
· · · = tr(Xd2). Then for all j,

d2 tr(Xj) =
d2∑
k=1

tr(Xk) = d tr I

and so d tr(Xj) = tr I = dimπ. The Gram matrix of π(x1), . . . , π(xd2) with respect to the
Frobenius inner product on Mdimπ(C) equals (tr(XjXk))j,k = (dimπ

d
sjk)j,k =

dimπ
d
S, which

is invertible by Lemma B.1. Therefore π(x1), . . . , π(xd2) are linearly independent. □
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Representations of AS of minimal dimension mimic the properties of BIC-POVMs
in the following sense.

Proposition D.2. BIC-POVMs that induce S correspond to the d-dimensional repre-
sentations of AS.

Proof. If a BIC-POVM 1
d
X1, . . . ,

1
d
Xd2 induces S, then the tuple (Xj)j gives rise to a

d-dimensional representation π of AS. On the other hand, if π is a d-dimensional rep-
resentation of AS, then rk π(xj) = tr π(xj) = 1 by Proposition D.1. Consequently
tr(π(xj)π(xk)) = sjk for all j, k, and so 1

d
π(x1), . . . ,

1
d
π(xd2) is a BIC-POVM inducing

S. □

By Proposition D.2, every BIC-POVM inducing S gives rise to an irreducible repre-
sentation of AS. However, AS might have other irreducible representations (cf. Section
G). Roughly speaking, this is an obstruction to the existence of “true” self-testing results
in our setup; nevertheless, even the partial knowledge on representations of AS turns out
to be sufficient for our device-independent results from Section 3. We will also require
an alternative definition of AS, as follows.

Lemma D.3. The C*-algebra AS equals

C∗
〈
x1, . . . , xd2 : xj = x∗j = x2j ∀j,

d2∑
j=1

xj = d, (1− sjk)(xj − xk) = (xj − xk)
3 ∀j, k

〉
.

Proof. Let ÃS denote the new C*-algebra from the statement of Lemma D.3. Since

(xj − xk)
3 = (xj − xk)− (xjxkxj − xkxjxk)

for projections xj, xk, it follows that the relations (1− sjk)(xj − xk) = (xj − xk)
3 in ÃS

can be replaced with

(D.1) xjxkxj − sjkxj = xkxjxk − sjkxk.

Thus, it is clear that the defining relations of AS imply those of ÃS (because in AS, both
sides of Eq. (D.1) are 0, and thus equal). It now suffices to see the converse; namely,
that xjxkxj − sjkxj = 0 holds in ÃS. Firstly, observe that xjxkxj − sjkxj is positive
semidefinite in ÃS for j ̸= k (and also trivially for j = k) since

xjxkxj − sjkxj =

(
1√

1−sjk
xjxkxj − sjk√

1−sjk
xj

)2

holds by Eq. (D.1). Next, for every j we have

∑
k

(
xjxkxj − sjkxj

)
= xj

∑
k

xk

xj −

∑
k

sjk

xj = xj · d · xj − dxj = 0.

Therefore xjxkxj − sjkxj = 0 for all j, k by semidefiniteness, as desired. □
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D.2. Local support of a mixed bipartite state. In this subsection we recall the
definition of the local support of a mixed bipartite state, and highlight some of its features.

Given a mixed bipartite state ρ ∈ MdA(C)⊗MdB(C), its local support on Alice’s side
suppA ρ ⊆ CdA is the range of trB ρ ∈ MdA(C); here, trB denotes the partial trace over
CdB . The local support of ρ on Bob’s side suppB ρ ⊆ CdB is defined analogously. Given
an operator X : CdA → CdA , its compression onto the local support of ρ is the operator
X̂ : suppA ρ → suppA ρ given by X̂ = U∗XU where U : suppA ρ → CdA is the inclusion
(that is, U∗U is the identity on suppA ρ, and UU∗ is the projection acting on CdA whose
range is suppA ρ). Analogously we define compressions onto suppB ρ for operators on
CdB . The following lemma might be folklore (especially (i)), but we record it for the sake
of completeness.

Lemma D.4. Let ρ ∈ MdA(C)⊗MdB(C) be a mixed bipartite state.

(i) If U : suppA ρ→ CdA is the inclusion then (UU∗ ⊗ I)ρ = ρ.
(ii) If Y ∈ MdB(C) then ran trB

(
(I ⊗ Y )ρ

)
⊆ suppA ρ.

Proof. First we check (i) and (ii) for a pure state ρ. After a local unitary basis change
we can assume that ρ =

∑r−1
i,j=0 λiλj|ii⟩⟨jj| for λi, λj > 0. Then trB ρ =

∑r−1
i=0 λ

2
i |i⟩⟨i|, so

UU∗ =
∑r−1

i=0 |i⟩⟨i| and (i) holds. The range of trB((I ⊗ Y )ρ) =
∑r−1

i,j=0 λiλj ⟨j|Y |i⟩ |i⟩⟨j|
is contained in the span of {|0⟩ , . . . , |r − 1⟩}, so (ii) holds.

If ρ =
∑

k γkρk where γk > 0 and ρk are pure states, then suppA ρ =
∑

k suppA ρk by
semidefiniteness. Thus (UU∗ ⊗ I)ρk = ρk for all k. Also, the range of trB((I ⊗ Y )ρ) =∑

k γk trB((I ⊗ Y )ρk) is contained in suppA ρ by the previous paragraph. Therefore (i)
and (ii) hold for ρ. □

D.3. Block-wise maximally entangled states. In this subsection we see how a syn-
chronicity condition on a mixed bipartite state ρ implies that ρ admits a block diagonal
decomposition into maximally entangled states. This is achieved by invoking two basic
facts about representations of the C*-algebras (see [Pro07] for a comprehensive source
on representation theory). First, every representation breaks down into irreducible ones;
second, there is a unique nonzero homomorphism between unitarily equivalent irreducible
representations, and none between unitarily non-equivalent ones (Schur’s lemma).

At a high level, Proposition D.5 below states the following: if Alice’s measurements
act on the shared state in the same way as Bob’s (synchronicity condition (D.2)), then
after a local unitary change the coordinates, the shared state decomposes into lower-
dimensional maximally entangled states |φdα⟩ (whose local dimensions dα are determined
by the measurements). Later in Section E, this result is applied to characterize the state
of an optimal strategy for the scenario from Section C. Within Proposition D.5 and the
rest of the paper, we often tacitly reshuffle the order of tensor factors for the sake of
notation.

Proposition D.5. Let E1, . . . , En ∈ MdA(C) and F1, . . . , Fn ∈ MdB(C) be hermitian
matrices, and ρ ∈ MdA(C)⊗MdB(C) a mixed bipartite state, such that

(D.2) (Ej ⊗ I)ρ = (I ⊗ Fj)ρ for j ∈ [n].
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Then there exist L ∈ N, dα, eα, fα ∈ N for α ∈ [L], and isometries U :
⊕

α Ceα ⊗ Cdα →
CdA, V :

⊕
α Cfα ⊗ Cdα → CdB such that:

(i) ranU = suppA ρ and ranV = suppB ρ;
(ii) U∗EjU ∈

⊕
α Ieα ⊗Mdα(C) and V ∗FjV ∈

⊕
α Ifα ⊗Mdα(C) for j ∈ [n];

(iii) (U ⊗ V )∗ρ(U ⊗ V ) is a mixture of pure states of the form⊕
α

|χα⟩ ⊗ |φdα⟩ ∈
⊕
α

(
Ceα ⊗ Cfα

)
⊗
(
Cdα ⊗ Cdα

)
⊂

(⊕
α

Ceα ⊗ Crαd

)
⊗

(⊕
α

Cfα ⊗ Crαd

)
;

(iv) if ρ is pure then U∗EjU =
(
V ∗FjV

)t for j ∈ [n].

Proof. Let Êj and F̂j denote the compressions of Ej onto suppA ρ and Fj onto suppB ρ,
respectively. Also, let ρ̂ denote the compression of ρ onto suppA ρ ⊗ suppB ρ. Since
Êj, F̂j are hermitian, the unital algebras generated by Ê1, . . . , Ên and F̂1, . . . , F̂n are
finite-dimensional C*-algebras. Let us identify suppA ρ = CNA , suppB ρ = CNB . By
[Tak02, Theorem I.11.2], the algebras generated by Êj and F̂j break up into irreducible
representations; that is, one can find unitary changes of coordinates in which the tuples
(Êj)j and (F̂j)j are block-diagonal, with irreducible blocks. More explicitly, there exist
unitaries U ∈ MNA

(C), V ∈ MNB
(C) and nonnegative integers L,M ′,M ′′, eα, fα, dα, g

′
α

and g′′α for all α ∈ [L] such that

Ěj := U∗ÊjU =
L⊕

α=1

X⊕eα
j,α ⊕

M ′⊕
α=1

X ′⊕g′α
j,α for j ∈ [n],

F̌j
t
:= (V ∗F̂jV )t =

L⊕
α=1

X⊕fα
j,α ⊕

M ′′⊕
α=1

X ′′⊕g′′α
j,α for j ∈ [n],

(D.3)

where (Xj,α)j, (X
′
j,α)j, (X

′′
j,α)j are pairwise unitarily non-equivalent irreducible tuples,

and Xj,α ∈ Mdα(C).
Let ρ̌ := (U ⊗ V )∗ρ̂(U ⊗ V ) =

∑K
k=1 pk|ψk⟩⟨ψk| be a spectral decomposition of ρ̌,

where |ψ1⟩ , . . . , |ψK⟩ ∈ CNA ⊗ CNB are orthogonal states, and p1, . . . , pK > 0. Let mat
denote the matricization operator3 transforming vectors into matrices, determined by the
linear extension of mat(|ab⟩) = |a⟩⟨b| defined on simple tensors. Then

(D.4)
K⋂
k=1

kermat(|ψk⟩) = 0,
K⋂
k=1

kermat(|ψk⟩)t = 0

since all operators and states have been compressed to suppA ρ and suppB ρ. By Eq. (D.2)
we have (Ěj ⊗ I) |ψk⟩ = (I ⊗ F̌j) |ψk⟩, and therefore, applying mat(.) again,

(D.5) Ějmat(|ψk⟩) = mat(|ψk⟩)F̌ t
j for j ∈ [n], k ∈ [K].

In particular, Eq. (D.5) means that the (α, β)-block of mat(|ψk⟩) with respect to the
block decomposition (D.3) determines a homomorphism between the diagonal α-block of

3For example, mat( 1√
2
(|00⟩+ |11⟩)) = 1√

2
(|0⟩⟨0|+ |1⟩⟨1|) = 1√

2

(
1 0
0 1

)
.
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(Ěj)j and the β-block of (F̌ t
j )j. Suppose M ′ > 0 holds in (D.3). By Eq. (D.5) and Schur’s

lemma [Pro07, Corollary 6.1.7], the (L+ 1)th block-row of mat(|ψk⟩) is zero for every k,
which contradicts Eq. (D.4). Therefore M ′ = 0, and analogously M ′′ = 0. Hence

(D.6) Ěj =
L⊕

α=1

X⊕eα
j,α , F̌j

t
=

L⊕
α=1

X⊕fα
j,α ,

and we can view mat(|ψk⟩) as a block matrix with
∑

α eα block-rows and
∑

α fα block-
columns according to decompositions (D.6). By Eq. (D.5), irreducibility of (Xj,α)j and
another application of Schur’s lemma, a block in mat(|ψk⟩) is a nonzero scalar multiple
of the identity matrix if the row and column correspond to the same (Xj,α)j, and zero
otherwise. Explicitly, mat(|ψk⟩) =

⊕
αRk,α ⊗ Idα for some Rk,α ∈ Ceα×fα , and therefore

ρ̌ =
K∑
k=1

pk|ψk⟩⟨ψk|, |ψk⟩ =
L⊕

α=1

√
dαmat−1(Rk,α)⊗ |φdα⟩ .

Finally, assume that ρ is pure. Then ρ̌ = |ψ1⟩⟨ψ1| and mat(ψ1) =
⊕

αR1,α ⊗ Idα is
invertible by Eq. (D.4). This is only possible if R1,α is invertible for every α. In particular,
R1,α has to be a square matrix, and therefore eα = fα for all α. Hence Ěj = F̌ t

j by
(D.6). □

Remark D.6. Proposition D.5(iv) is a special case of [MPS24, Corollary 3.6]. On the other
hand, purity in (iv) is essential. A counterexample with n = 1 and dA = dB = 3 is given
by E1 = 1⊕1⊕0, F1 = 1⊕0⊕0 and ρ = 1

2
(|ψ1⟩⟨ψ1|+ |ψ2⟩⟨ψ2|) where ψ1 =

1√
2
(|00⟩+ |21⟩)

and ψ2 =
1√
2
(|10⟩+ |22⟩).

E. Optimal strategy analysis

This section analyzes optimal strategies for the scenario in Section C, and establishes
our main result on certifying maximal randomness (Theorem E.4). Throughout the
section let HA and HB be finite-dimensional Hilbert spaces; ρ a mixed bipartite state on
HA⊗HB; Ajk

1 , A
jk
2 , A

r
j for (j, k) ∈ [d2]× [d2] with j < k positive semidefinite contractions

on HA with Ajk
1 +Ajk

2 ⪯ I; and Bj for j ∈ [d2] positive semidefinite contractions on HB.
In other words, ρ,Ajk

a , A
r
j , B

j determine a quantum model strategy compatible with the
scenario in Section C. Furthermore, given a measurement X on Alice’s (or Bob’s) side,
its compression to suppA ρ (or suppB ρ) is denoted X̂.

E.1. Measurements in an optimal strategy. We start by extracting properties of
measurements Bj and Ajk

a in an optimal strategy for the Bell function (C.1).

Proposition E.1. Assume the Bell function (C.1) attains d2 at the strategy given by
ρ,Ajk

a , A
r
j , B

j. Then√
1− sjk

(
(Ajk

1 − Ajk
2 )⊗ I

)
ρ =

(
I ⊗ (Bj −Bk)

)
ρ ∀j < k,(E.1) (

Ar
j ⊗ (I −Bj)

)
ρ = 0 ∀j,(E.2)
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Ajk
1 − Ajk

2 preserve suppA ρ and Bj preserve suppB ρ, and the following hold for the
compressions of measurements to the local support of ρ:

(B̂j)2 = B̂j ∀j,(E.3) ∑
j

B̂j = dI,(E.4)

(Âjk
1 )2 = Âjk

1 , (Âjk
2 )2 = Âjk

2 , Â
jk
1 Â

jk
2 = 0 ∀j < k,(E.5)

B̂jB̂kB̂j = sjkB̂
j ∀j ̸= k.(E.6)

Proof. Attaining the maximal value at the given strategy is equivalent to saying that
tr(Wdρ) = d2, upon substituting Alice’s and Bob’s measurement operators into Wd. By
Proposition C.3 and its proof, we have that Wd = d2I − Θd, where Θd ⪰ 0 is given in
(C.5). Attaining the value d2 therefore implies tr(Θdρ) = 0. This also implies Θdρ = 0
because Θd and ρ are positive semidefinite. Since Θd is a sum of hermitian squares
in (C.5), it follows that each of the terms in the sum are zero, in particular we have
Eqs. (E.1), (E.2) and (

dI ⊗ I −
∑
j

I ⊗Bj
)
ρ = 0,(E.7) [

I ⊗ (Bj − (Bj)2)
]
ρ = 0,(E.8) ((

Ajk
1 + Ajk

2 − (Ajk
1 − Ajk

2 )2
)
⊗ I

)
ρ = 0(E.9)

hold for all j < k. Next, notice that applying partial traces and Lemma D.4(ii) to
Eq. (E.1) yields

(E.10) (Bj −Bk) suppB ρ ⊆ suppB ρ, (Ajk
1 −Ajk

2 ) suppA ρ ⊆ suppA ρ for all j < k.

In particular, the differences Bj −Bk preserve suppB ρ for all j, k. Thus the same holds
for
∑

k(B
j − Bk) = d2Bj −

∑
k B

k, which acts as d2Bj − dI on suppB ρ by Eq. (E.7).
Therefore

(E.11) Bj suppB ρ ⊆ suppB ρ for all j,

and similarly,

(E.12) Aj suppA ρ ⊆ suppA ρ for all j.

That is, these measurement operators preserve the local support of ρ. Thus, Eqs. (E.7),
(E.8) and (E.9) can be restricted to the local support of ρ, and the marginal states on
the local support are invertible by definition. Right-multiplying by appropriate inverses
leads to

dI −
∑
j

B̂j = 0,(E.13)

B̂j − (B̂j)2 = 0,(E.14)

Âjk
1 + Âjk

2 − (Âjk
1 − Âjk

2 )2 = 0(E.15)

for all j < k (more precisely, Eqs. (E.10) and (E.11) are needed because Bj and Ajk
1 −Ajk

2

appear nonlinearly in Eqs. (E.8) and (E.9), respectively). In particular, Eqs. (E.3) and
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(E.4) hold, and Eq. (E.5) follows by Eq. (E.15) and Lemma C.2. We are left with proving
Eq. (E.6). Left-multiplying Eq. (E.1) by

√
1− sjk(A

jk
1 − Ajk

2 )⊗ I yields

(1− sjk)
(
(Ajk

1 − Ajk
2 )2 ⊗ I

)
ρ =

√
1− sjk

(
(Ajk

1 − Ajk
2 )⊗ (Bj −Bk)

)
ρ

=
(
I ⊗ (Bj −Bk)

) (√
1− sjk(A

jk
1 − Ajk

2 )⊗ I
)
ρ =

(
I ⊗ (Bj −Bk)2

)
ρ.

(E.16)

We then left-multiply Eq. (E.16) by
√

1− sjk(A
jk
1 − Ajk

2 ) ⊗ I one more time, and note
that the projectivity and orthogonality of Âjk

a as in Eq. (E.5) imply that (Âjk
1 − Âjk

2 )3 =

Âjk
1 − Âjk

2 . By Eq. (E.10) we therefore have(√
1− sjk

3
(Ajk

1 − Ajk
2 )⊗ I

)
ρ =

(
I ⊗ (Bj −Bk)3

)
ρ,

which together with Eq. (E.1) yields

(E.17)
(
I ⊗ (1− sjk)(B

j −Bk)
)
ρ =

(
I ⊗ (Bj −Bk)3

)
ρ

for j < k. By Eq. (E.11) and symmetry we have

(E.18) (1− sjk)(B̂
j − B̂k) = (B̂j − B̂k)3

for all j ̸= k. Then Eqs. (E.13), (E.14), (E.18) together with Lemma D.3 show that
Eq. (E.6) holds. □

In particular, Proposition E.1 shows that the compressions of Bj from an optimal
strategy determine a representation of the C*-algebra AS from Section D.1. Next, we
construct operators Cj on Alice’s side whose compressions also determine a representation
of AS. For j ∈ [d2] denote

(E.19) Cj :=
1

d2

dI +∑
k ̸=j

√
1− sjk(A

jk
1 − Ajk

2 )

 ,

where we write Ajk
a = Akj

a for k < j. By Proposition E.1 we have

(E.20) Cj suppA ρ ⊆ suppA ρ, (Cj ⊗ I)ρ = (I ⊗Bj)ρ ∀j.

Then Eqs. (E.20), (E.3), (E.4), (E.6) imply that Ĉj are projections that add up to dI,
and ĈjĈkĈj = sjkĈj, so Ĉj indeed determine a representation of AS. We can use these
operators to deduce some partial information on the remaining measurements of Alice,
that is, the Ar

j operators. Recall that every finite-dimensional representation of the
C*-algebra AS is a direct sum of irreducible ones, whose dimensions are multiples of d
(Proposition D.1).

Proposition E.2. Assume the Bell function (C.1) attains d2 at the strategy given by
ρ,Ajk

a , A
r
j , B

j. Given Alice’s operators Ĉj defined in Eq. (E.19), which determine a rep-
resentation of AS, choose a basis of suppA ρ such that

(E.21) Ĉj =
L⊕

α=1

Ieα ⊗ Ĉj,α,
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where (Ĉj,α)j determine pairwise non-isomorphic irreducible representations of AS of
dimension rαd for rα ∈ N. Then, with respect to the decomposition (E.21), for every
α ∈ [L] the (α, α)-block of Âr

j in Meα(C)⊗Mrαd(C) equals

Ieα ⊗ 1

d
Ĉj,α +Wj,α,

where trCrαd(Wj,α) = 0 ∈ Meα(C).

Proof. Proposition E.1 implies((
Ar

j(I − Cj)
)
⊗ I
)
ρ =

(
Ar

j ⊗ I
) (

(I − Cj)⊗ I
)
ρ

=
(
Ar

j ⊗ I
) (
I ⊗ (I −Bj)

)
ρ

=
(
Ar

j ⊗ (I −Bj)
)
ρ = 0

and, since Cj preserves suppA ρ, one obtains Âr
j(I − Ĉj) = 0. Since Âr

j and Ĉj are
hermitian, we obtain

(E.22) Âr
jĈj = Âr

j = ĈjÂ
r
j ∀j.

Let (Xjαpq)
eα
p,q=1 denote the (α, α)-block of Âr

j with respect to the decomposition (E.21).
In other words, the (α, α)-block of Âr

j is given by
∑eα

p,q=1 |p⟩⟨q| ⊗ Xjαpq. Plugging this
into Eq. (E.22) after projecting onto the (α, α) block, we obtain

(E.23) XjαpqĈj,α = Xjαpq = Ĉj,αXjαpq

for all j and p, q ∈ [eα]. Note that Ĉ1,α, . . . , Ĉd2,α have traces rα and are linearly inde-
pendent by Proposition D.1. Therefore

(E.24) Xjαpq =
d2∑
k=1

λjαpq,kĈk,α +Wjαpq

for unique λjαpq,k ∈ C and Wjαpq ∈ Mrαd(C) satisfying tr(WjαpqĈℓ,α) = 0 for all ℓ. In
particular, tr(Wjαpq) = 0 because the Ĉℓ,α add up to a multiple of identity. Then (E.23)
and (E.24) together with Ĉj,αĈk,αĈj,α = sjkĈj,α imply

sℓj trXjαpq = tr(Ĉj,αĈℓ,αĈj,αXjαpq) = tr
(
Ĉℓ,αXjαpq

)
=

d2∑
k=1

λjαpq,k tr
(
Ĉℓ,αĈk,α

)

=
d2∑
k=1

sℓkrαλjαpq,k

(E.25)

for all ℓ ∈ [d2]. Since the matrix S is invertible by Lemma B.1, the linear system
(E.25) of d2 equations in unknowns λjαpq,1, . . . , λjαpq,d2 has a unique solution, namely
λjαpq,j =

trXjαpq

rα
and λjαpq,k = 0 for k ̸= j. Substituting this into Eq. (E.24), we have

(E.26) Xjapq =
trXjαpq

rα
Ĉj,α +Wjαpq ∀j, p, q.
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Since Âr
j is a POVM, we have

∑
j Xjαpp = I and

∑
j Xjαpq = 0 for p ̸= q. Then (E.26),

linear independence of the Ĉj,α, span{Ĉj,α}j ∩ span{Wjαpq}j,p,q = {0} and the relation∑
j
1
d
Ĉj,α = I altogether imply trXjαpp

rα
= 1

d
and trXjαpq

rα
= 0 for p ̸= q. □

E.2. State factorization. The preceding characterization of measurements and state
block decomposition allow us to prove that 2 log(d) bits of randomness can be extracted
from the outcome of the setting r of Alice, by showing that a classical-quantum state
between Alice and Eve necessarily factors (formally stated in Theorem E.4).

It is well known that if the partial trace of a bipartite pure state is pure, then the
original state is a product state. In the proof of Theorem E.4 below, we require a variation
of this fact for states in a tripartite system. The following technical lemma explains what
can be deduced from the partial trace in the case where the subsystems decompose into
direct sums, and the reduced state is highly structured with respect to these direct sums.

Lemma E.3. Let HC ,HD,HE be finite-dimensional Hilbert spaces, with decompositions
HC =

⊕
αHCα and HD =

⊕
αHDα indexed by a common index set. Suppose there are

pure states |ψ⟩ ∈ HC ⊗ HD ⊗ HE and |τα⟩ ∈ HCα such that trE(|ψ⟩⟨ψ|) is a mixture of
pure states in ⊕

α

|τα⟩ ⊗ HDα .

Then,
|ψ⟩ ∈

⊕
α

|τα⟩ ⊗ HDα ⊗HE.

Proof. First, we start with a basic observation on the interaction of tensor products and
direct sums. Consider a pure state

|ξ⟩ ∈ HC ⊗HD =
⊕
α,β

HCα ⊗HDβ
.

The density operator |ξ⟩⟨ξ| on HC ⊗ HD can be viewed as a block matrix indexed by
pairs αβ for α, β from the common index set, where the (αβ, α′β′) block of |ξ⟩⟨ξ| is a
map HC′

α
⊗HD′

β
→ HCα ⊗HDβ

. If |ξ⟩ is not an arbitrary vector of HC ⊗HD but belongs
to its “diagonal” subspace

⊕
α HCα ⊗ HDα , then the (αβ, α′β′) block of |ξ⟩⟨ξ| is zero

whenever α ̸= β or α′ ̸= β′.
Let us now turn to the proof of the statement.
With respect to the identification

HC ⊗HD ⊗HE =
⊕
α,β

HCα ⊗HDβ
⊗HE

we write |ψ⟩ =
⊕

α,β |ψαβ⟩ for |ψαβ⟩ ∈ HCα ⊗ HDβ
⊗ HE. Let us consider the diag-

onal blocks |ψαβ⟩⟨ψαβ| of |ψ⟩⟨ψ| with respect to this decomposition. If α ̸= β, then
trE(|ψαβ⟩⟨ψαβ|) = 0 by the first paragraph because trE(|ψ⟩⟨ψ|) is a mixture of pure states
in
⊕

α HCα ⊗ HDα . Thus, |ψαβ⟩ = 0 for α ̸= β. If α = β, then trE(|ψαα⟩⟨ψαα|) is a
mixture of pure states in |τα⟩ ⊗HDα . In particular, the further reduced (subnormalized)
state trDαE(|ψαα⟩⟨ψαα|) is proportional to the pure state |τα⟩⟨τα|. Therefore, |ψαα⟩⟨ψαα| is
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a (subnormalized) product bipartite state on HCα ⊗ (HDα ⊗HE), so |ψαα⟩ = |τα⟩ ⊗ |χα⟩
for some |χα⟩ ∈ HDα ⊗HE. Thus, |ψ⟩ =

⊕
α |τα⟩ ⊗ |χα⟩. □

A pure tripartite state |ψ⟩ ∈ HA ⊗HB ⊗HE is a purification of the mixed bipartite
state ρ on HA ⊗ HB if ρ = trE(|ψ⟩⟨ψ|). The device-independent randomness of the
outcome of the setting r is bounded from below by the conditional von Neumann entropy
H(A|E)ρAE

of the classical-quantum state

(E.27) ρAE =
d2∑
j=1

|j⟩⟨j|A ⊗ trAB

[
|ψ⟩⟨ψ|(Ar

j ⊗ IB ⊗ IE)
]

where |ψ⟩ ∈ HA ⊗HB ⊗HE is the worst-case purification of ρ; that is, the purification
of ρ that gives the lowest value of H(A|E)ρAE

.

Theorem E.4. Suppose the state ρ and measurement (Ar
j)j appear in an optimal quan-

tum strategy for the Bell function (C.1), and let |ψ⟩ ∈ HA ⊗HB ⊗HE be a purification
of ρ. Then

d2∑
j=1

|j⟩⟨j|A ⊗ trAB

[
|ψ⟩⟨ψ|(Ar

j ⊗ IB ⊗ IE)
]
=

 1

d2

d2∑
j=1

|j⟩⟨j|A

⊗ σE

for some state σE on HE.
In particular, the maximal violation of the Bell inequality (C.1) certifies 2 log(d) bits

of device-independent randomness from the outcome of the setting r of Alice.

Proof. The operators Ĉj and B̂j determine finite-dimensional representations of AS,
which are direct sums of irreducible ones whose dimensions are multiples of d by Propo-
sition D.1. By Eq. (E.20) and Proposition D.5 it then follows that there are isometries
U : CDAd → HA and V : CDBd → HB with ranU = suppA ρ and ranV = suppB ρ such
that

(E.28) U∗CjU ∈
⊕
α

(Ieα ⊗Mrαd(C)), V ∗BjV ∈
⊕
α

(Ifα ⊗Mrαd(C)),

where DA =
∑

α eαrα and DB =
∑

α fαrα. Furthermore, (U ⊗ V )∗ρ(U ⊗ V ) is a mixture
of pure states in

(E.29)
⊕
α

(
Ceα ⊗ Cfα

)
⊗ |φrαd⟩ .

With respect to the decomposition (E.28), let

U∗CjU =
⊕
α

Ieα ⊗ Ĉj,α

where tr Ĉj,α = rα due to Proposition D.1. By Proposition E.2, we have

(E.30) U∗Ar
jU = Nj +

⊕
α

(
Ieα ⊗ 1

d
Ĉj,α +Wj,α

)
,

where trCrαd(Wj,α) = 0, and all diagonal (α, α)-blocks of Nj ∈ MDAd(C) are zero.
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Let |ψ⟩ be a purification of ρ. Then ρ = trE(|ψ⟩⟨ψ|) and so (U ⊗ V )∗ρ(U ⊗ V ) =
trE((U ⊗ V ⊗ IE)

∗|ψ⟩⟨ψ|(U ⊗ V ⊗ IE)). By Lemma E.3 and recalling Eq. (E.29), up to a
suitable shuffle of direct sums and tensor products we have

|ψ̂⟩ := (U∗ ⊗ V ∗ ⊗ IE) |ψ⟩ =
⊕
α

|χα⟩ ⊗ |φrαd⟩

for some |χα⟩ ∈ (Ceα ⊗ Cfα)⊗HE.
Let us record two observations on the block interactions of the decomposition (E.28).

In the following calculations, equalities are valid up to a compatible shuffle of tensor
products. Firstly, for all α and j we have

trAB

[(
|φrαd⟩⟨φrαd| ⊗ |χα⟩⟨χα|

) (
Wj,α ⊗ Ifαrαd ⊗ IE

)]
= trCeα⊗Cfα

[
trCrαd⊗Crαd

[(
|φrαd⟩⟨φrαd| ⊗ |χα⟩⟨χα|

) (
Wj,α ⊗ Ifαrαd ⊗ IE

)]]
= trCeα⊗Cfα

[
|χα⟩⟨χα|

(
1

rαd
trCrαd

(
Wj,α

)
⊗ Ifα ⊗ IE

)]
= 0,

(E.31)

where (with a slight abuse of notation) we are looking at the subspace Ceαrαd of HA

after the isometry U and the subspace Cfαrαd of HB after the isometry V , and we used
trCrαd(Wj,α) = 0 from Proposition E.2. Secondly, for all j we have

trAB

[
|ψ̂⟩⟨ψ̂|

(
Nj ⊗ IDBd ⊗ IE

)]
= trAB


⊕

α,β

|φrαd⟩⟨φrβd| ⊗ |χα⟩⟨χβ|

(Nj ⊗ IDBd ⊗ IE
)

= trAB

(∑
γ

(
|φrαd⟩⟨φrγd| ⊗ |χα⟩⟨χγ|

) (
(Nj)γ,β ⊗ (IDBd)γ,β ⊗ IE

) )
α,β


=0,

(E.32)

where in the third line we re-wrote the argument of the partial trace in terms of a block
matrix with the blocks indexed by α and β, and in the last line we used the fact that
(Nj)α,α = 0 for all α, and that (IDBd)α,β = 0 for all α ̸= β.

For the sake of readability, IB denotes the identity on Bob’s system or its subsystems
(depending on the context) in the following calculations. For every j ∈ [d2], we can use
Eqs. (E.30), (E.31) and (E.32) together with (UU∗⊗V V ∗⊗IE) |ψ⟩ = |ψ⟩ from Proposition
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D.5 (and Lemma D.4(i)) to calculate

trAB

[
|ψ⟩⟨ψ|(Ar

j ⊗ IB ⊗ IE)
]

= trAB

[
(U∗ ⊗ V ∗ ⊗ IE)|ψ⟩⟨ψ|(U ⊗ V ⊗ IE)(U

∗Ar
jU ⊗ IB ⊗ IE)

]
= trAB

|ψ̂⟩⟨ψ̂|
(Nj +

⊕
α

(
Ieα ⊗ 1

d
Ĉj,α +Wj,α

))
⊗ IB ⊗ IE




= trAB

|ψ̂⟩⟨ψ̂|
(⊕

α

Ieα ⊗ 1

d
Ĉj,α

)
⊗ IB ⊗ IE




=
∑
α

trAB

(|χα⟩⟨χα| ⊗ |φrαd⟩⟨φrαd|
)(Ieα ⊗ Ĉj,α

d

)
⊗ IB ⊗ IE




=
∑
α

tr

|φrαd⟩⟨φrαd|

(
Ĉj,α

d
⊗ Irαd

) trCeα⊗Cfα (|χα⟩⟨χα|)

=
∑
α

1

rαd2
tr
(
Ĉj,α

)
trCeα⊗Cfα (|χα⟩⟨χα|)

=
∑
α

1

d2
trCeα⊗Cfα (|χα⟩⟨χα|),

which is independent of j. Above, in the second line we used (UU∗⊗V V ∗⊗IE) |ψ⟩ = |ψ⟩;
in the third line we used Eq. (E.30); the fourth line comes from Eq. (E.32); the fifth
line from the block structure of |ψ̂⟩⟨ψ̂| and the block-diagonal structure of the operator
multiplying it; the sixth line is a re-grouping of the terms; and the seventh line uses the
fact that tr(|φd⟩⟨φd|(M ⊗ I)) = 1

d
tr(M) for any operator M .

As a consequence of the above, the state ρAE in (E.27) can be written as

ρAE =
d2∑
j=1

|j⟩⟨j|A ⊗ trAB

[
|ψ⟩⟨ψ|(Ar

j ⊗ IB ⊗ IE)
]

=
1

d2

d2∑
j=1

|j⟩⟨j|A ⊗ σE

where σE :=
∑

α trCeα⊗Cfα (|χα⟩⟨χα|) is a state on HE. It therefore follows that

H(A|E)ρAE
= H(AE)ρAE

−H(E)ρAE
= H

 1

d2

d2∑
j=1

|j⟩⟨j|A ⊗ σE

−H(σE)

= H

 1

d2

d2∑
j=1

|j⟩⟨j|A

+H(σE)−H(σE) = 2 log(d)
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for any purification |ψ⟩ compatible with the observed correlation. □

F. Classical value of the BIC-POVM Bell function

Let d ≥ 2, and let S ∈ Md2(R) be a matrix induced by a BIC-POVM. Consider the
Bell function

2
∑
j<k

√
1− sjk

[
p(1, 1|jk, j) + p(2, 1|jk, k)− p(1, 1|jk, k)− p(2, 1|jk, j)

]
−
∑
j<k

(1− sjk)
[
pA(1|jk) + pA(2|jk)

]
− d(d− 2)

d2∑
j=1

pB(1|j)−
d2∑
j=1

p(j, 2|r, j)
(F.1)

introduced in Section C. By Proposition C.3, its maximal quantum value equals d2. In
this section we provide an expression and an upper bound for its maximal classical value.

Proposition F.1. Let S ∈ Md2(R) be a matrix induced by a BIC-POVM. Then the
maximal classical value of the Bell function (F.1) equals

(F.2) max
J⊆[d2],

0<|J |<2d

−d(d− 2)|J |+
∑

j∈J,k/∈J

(
2
√
1− sjk − (1− sjk)

)
In particular, (F.1) is bounded from above by

d2 − 1

4

 min
J⊆[d2],

0<|J |<2d

∑
j∈J,k/∈J

s2jk

 < d2.

Proof. Since maximizing (F.1) over all classical strategies is a convex optimization prob-
lem, its solution is attained at a deterministic strategy (since classical strategies are
convex combinations of deterministic ones). Thus it suffices to solve the optimization
problem

max 2
∑
j<k

√
1− sjk(a

jk
1 − ajk2 )(bj − bk)−

∑
j<k

(1− sjk)(a
jk
1 + ajk2 )

− d(d− 2)
∑
j

bj −
∑
j

arj(1− bj)

subject to: ajk1 , a
jk
2 , bj, a

r
j ∈ {0, 1}, ajk1 a

jk
2 = 0, exactly one of arj is nonzero.

(F.3)

It is easier to analyze (F.3) with auxiliary notation ajki = akji for j > k that makes (F.3)
equivalent to

max
∑
j,k

(√
1− sjk(a

jk
1 − ajk2 )(bj − bk)−

1− sjk
2

(ajk1 + ajk2 )

)
− d(d− 2)

∑
j

bj −
∑
j

arj(1− bj)

subject to: ajk1 = akj1 , a
jk
2 = akj2 , bj ∈ {0, 1}, ajk1 a

jk
2 = 0, exactly one of arj is nonzero.

(F.4)
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First, observe that 2
√
1− t − (1 − t) is a monotone decreasing function (0, 1) → (0, 1).

Let J ⊆ [d2] be arbitrary. Suppose we fix the bj arguments in the objective function of
(F.4) as bj = 1 if j ∈ J and bj = 0 if j /∈ J . To maximize the value of this partially
evaluated objective function, it is then necessary to set:

• ajk1 = 1 if j ∈ J and k /∈ J ,
• ajk2 = 1 if j /∈ J and k ∈ J ,
• ajk1 = ajk2 = 0 if j, k ∈ J or j, k /∈ J ,
• arj = 1 for some j ∈ J , unless J = ∅ in which case the choice of j is irrelevant.

For these arguments, the objective function of (F.4) evaluates as

(F.5) v(J) := −d(d− 2)|J |+
∑

j∈J,k/∈J

(
2
√

1− sjk − (1− sjk)
)

if J ̸= ∅, and as −1 if J = ∅. By applying the estimate

1− t < 2
√
1− t− (1− t) < 1− t2

4
for t ∈ (0, 1)

in (F.5) we see that

v(J) < −d(d− 2)|J |+
∑

j∈J,k/∈J

(
1− 1

4
s2jk

)
= |J |(2d− |J |)− 1

4

∑
j∈J,k/∈J

s2jk.

In particular, v(J) < 0 for |J | = 0 and |J | ≥ 2d. On the other hand, for J = {j} one has

v({j}) = −d(d− 2) +
∑
k ̸=j

(
2
√

1− sjk − (1− sjk)
)
> −d(d− 2) +

∑
k ̸=j

(1− sjk) = d.

Therefore the classical value equals max0<|J |<2d v(J). Moreover, the expression |J |(2d−
|J |) is at most d2, leading to the following upper bound on the classical value,

d2 − 1
4

min
0<|J |<2d

∑
j∈J,k/∈J

s2jk.

Note that this value is strictly less than d2 because
∑

j∈J,k/∈J s
2
jk > 0 for every 0 < |J | < d2

by Lemma B.1. □

Example F.2. Let us give a complete study of the classical value in the case of BIC-
POVMs on C2. A routine calculation shows that up to unitary similarity, every quadruple
of rank-one projections adding to 2I is of the form

P1 =

(
1 0
0 0

)
, P2 =

(
1− t1 − t2 −y1 − y2
−y1 − y2 t1 + t2

)
,

P3 =

(
t1 y1 + iz

y1 − iz 1− t1

)
, P4 =

(
t2 y2 − iz

y2 + iz 1− t2

)
,

yj =
tj
√
1− t1 − t2√
t1 + t2

, z = ±
√
t1t2√
t1 + t2
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where t1, t2 ≥ 0 and t1 + t2 ≤ 1. Let S = (tr(PjPk))
4
i,j=1. Then

S =


1 1− t1 − t2 t1 t2

1− t1 − t2 1 t2 t1
t1 t2 1 1− t1 − t2
t2 t1 1− t1 − t2 1


is invertible for t1, t2, 1 − t1 − t2 ̸= 0. Therefore BIC-POVMs on C2 are (up to unitary
similarity) given by (1

2
Pj)j as above for parameters t1, t2 satisfying t1, t2 > 0 and t1+ t2 <

1. Note that t1 = t2 =
1
3

yields a SIC-POVM. A case-by-case analysis of the formula in
Proposition F.1 shows that the classical game value of the Bell function (F.1) associated
with the BIC-POVM given by (t1, t2) equals

v(t1, t2) = 2 ·

 t1 + t2 + 2(
√
1− t1 +

√
1− t2 − 1) 0 < t2 ≤ 1−t1

2
, 0 < t1 ≤ 1−t2

2
;

2(
√
1− t1 +

√
t1 + t2)− 1− t2 0 < t1 ≤ t2, t2 ≥ 1−t1

2
, t1 + t2 < 1;

2(
√
1− t2 +

√
t1 + t2)− 1− t1 0 < t2 ≤ t1, t1 ≥ 1−t2

2
, t1 + t2 < 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. The regions and branches of the classical value function v(t1, t2).

In particular, the formula for v(t1, t2) leads to the following observations.

(i) limt→0 v(t, t) = 4, so the classical value can get arbitrarily close to the quantum
value;

(ii) limt→ 1
2
v(t, t) = 1 + 2

√
2 < 8

3
(
√
6− 1) = v(1

3
, 1
3
), so a SIC-POVM does not give the

largest gap between quantum and classical value;
(iii) 1 + 2

√
2 = inf{v(t1, t2) : t1, t2 > 0, t1 + t2 < 1}, so the gap between quantum and

classical value is at most 3− 2
√
2 ≈ 0.172.

G. Further remarks on BIC-POVMs

This appendix collects examples and statements which, while not required for the
derivation of the main results, are relevant to the broader theme of this paper.
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G.1. BIC-POVMs versus rank-one IC-POVMS. By definition, a BIC-POVM on
Cd is a d2-outcome IC-POVM of rank-one matrices with trace 1

d
. The Zd × Zd covariant

IC-POVMs from Section B are automatically BIC-POVMs, and moreover consists of
pairwise non-orthogonal matrices. However, this is not the case for general rank-one
IC-POVMs.

Example G.1. The quadruple(
1
2

0
0 0

)
,

(
1
8

−i
2
√
6

i
2
√
6

1
3

)
,

(
1
8

−1
2
√
6

−1
2
√
6

1
3

)
,

(
1
4

1+i
2
√
6

1−i
2
√
6

1
3

)
is a rank-one IC-POVM of pairwise non-orthogonal matrices, but not a BIC-POVM (since
not all traces are the same).

Example G.2. Consider the states |ψ1⟩ , . . . , |ψ9⟩ ∈ C3 given as

1
0
0

 ,

0
1
0

 ,


√

2
7√
2
7√
3
7

 ,


−
√

2
7√

2
7√
3
7

 ,


e2it0

√
2
7

e2it1
√

2
7√

3
7

 ,


e−2it0

√
2
7√

2
7√
3
7

 ,


−
√

2
7

e2it1
√

2
7√

3
7

 ,


√

2
7

e2it2
√

2
7√

3
7

 ,


√

2
7

e2it3
√

2
7√

3
7


for

t0 =
π
3
, t1 = arctan( 7√

3
), t2 = arctan(

√
3(14 +

√
217)), t3 = arctan(

√
3(14−

√
217)).

Then Mj =
1
3
|ψj⟩⟨ψj| form a BIC-POVM on C3 that does not arise from the construction

in Section B since M1M2 = 0.

Furthermore, d2-outcome rank-one IC-POVMs on Cd without additional restrictions
can be constructed in a very haphazard way. For example, if |ψ1⟩ , . . . , |ψd2⟩ ∈ Cd are
sufficiently generic, then |ψ1⟩⟨ψ1|, . . . , |ψd2⟩⟨ψd2| form a basis of Md(C). Their sum is
positive definite, and thus factors as K2 for a positive definite K ∈ Md(C). Then
K−1|ψ1⟩⟨ψ1|K−1, . . . , K−1|ψd2⟩⟨ψd2|K−1 is a rank-one IC-POVM.

Some more details are needed for a generic construction of BIC-POVMs. First ob-
serve that BIC-POVMs on Cd (up to unitary similarity) are in one-to-one correspondence
with hermitian matrices G ∈ Md2(C) such that Gjj = 1 for all j, the Schur product of
G and G is invertible, and 1

d
G is a projection. Concretely, (1

d
|ψj⟩⟨ψj|)j is a BIC-POVM

if and only if the matrix G = (⟨ψj|ψk⟩)j,k satisfies the above properties. Thus one can
construct BIC-POVMs as follows. Start with a full-rank d2 × d complex matrix K0.
After column orthonormalization of K0 we obtain K1. Then K2 = K1K

∗
1 is a projection

of rank d. Then there exists an effectively computable unitary U ∈ Md2(C) such that
K3 = UK2U

∗ has uniform diagonal entries trK2

d2
= 1

d
. Let G = dK3; if K0 was suffi-

cienly generic, the Schur product of G and G is invertible. Therefore G has the desired
properties, and one can extract a BIC-POVM out of G using unitary diagonalization.
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G.2. BIC-POVM C*-algebra. Let S ∈ Md2(R) be a matrix induced by a BIC-POVM.
For the sake of simplicity let us furthermore assume that all the entries of S are nonzero
(which is for example true for BIC-POVMs from Section B). In Section D.1 we introduced
the C*-algebra AS whose d-dimensional irreducible representations correspond to BIC-
POVMs that induce S (Proposition D.2). However, AS might have other irreducible
representations when d > 2; see Example G.5 below. This motivates the introduction of
the universal C*-algebra

BS = C∗
〈
x1, . . . , xd2 : xj = x∗j = x2j ∀j,

d2∑
j=1

xj = d, xjxkxj = sjkxj ∀j, k,

[
x1xj1xj2x1, x1xj3xj4x1

]
= 0 ∀j1, . . . , j4

〉
.

Note that BS is a quotient of AS. A straightforward inspection shows that BS = AS for
d ≤ 2; however, BS ̸= AS in general (see Example G.5 below).

Lemma G.3. The C*-subalgebra x1 · BS · x1 is abelian.

Proof. Observe that B = {x1xjxkx1 : j, k} generates x1 · BS · x1 as a C*-algebra. Indeed,
this follows by induction using x1uxjvx1 = 1

sj1
x1uxjx1 · x1xjvx1. Therefore BS is abelian

since B is a commuting family and B = B∗. □

Proposition G.4. Irreducible representations of BS correspond to BIC-POVMs that
induce S.

Proof. First observe that if π is a d-dimensional representation of AS, then π(xi) have
rank one, so π(xj)Mπ(xj) is a scalar multiple of π(xj) for every M ∈ Md(C) and j.
Therefore π is also a representation of BS. By Propositions D.1 and D.2 it thus suffices
to show that every representation of BS has a sub-representation of dimension d. Let
π : BS → B(H) be a representation of BS on a (nonzero) Hilbert space H, and denote
Xj = π(xj). Since the Xj add up to a multiple of the identity operator, at least one
of them is nonzero; since XjX1Xj = sj1Xj for all j, we in particular have X1 ̸= 0.
Let C = x1 · BS · x1. By Lemma G.3, the C*-algebra C is abelian, and nonzero since
X1 ̸= 0. Therefore the restriction of π to C has a one-dimensional sub-representation.
That is, there exists a unit vector |ψ⟩ ∈ H that is an eigenvector for every element of
π(C); namely, for every tuple (j1, . . . , jm) ∈ {1, . . . , d2}m there is λj1...jm ∈ C such that

X1Xj1 · · ·XjmX1 |ψ⟩ = λj1...jm |ψ⟩ .

In particular, |ψ⟩ lies in the range ofX1. Let K ⊂ H be the span of {X1 |ψ⟩ , · · · , Xd2 |ψ⟩}.
Firstly, we claim that K is an invariant subspace for X1, . . . , Xd2 , and therefore gives

rise to a finite-dimensional sub-representation of π. Observe that N ∈ B(H) is zero if
and only if X1XjN = 0 for j = 1, . . . , d2 (because XjX1Xj = sj1Xj, and Xj add up to a
nonzero multiple of the identity). Let k, ℓ ∈ {1, . . . , d2} be arbitrary; we will show that

(G.1) dXkXℓ |ψ⟩ =
d2∑
j=1

λjkℓ
s1j

Xj |ψ⟩ .
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By the preceding observation, (G.1) is equivalent to

(G.2) dX1XiXkXℓ |ψ⟩ =
d2∑
j=1

λjkℓ
s1j

X1XiXj |ψ⟩ for all i = 1, . . . , d2.

The choice of |ψ⟩ = X1 |ψ⟩ and the defining relations for Xj imply

d2∑
j=1

λjkℓ
s1j

X1XiXj |ψ⟩ =
d2∑
j=1

1

s1j
X1XiXjX1XjXkXℓX1 |ψ⟩ =

d2∑
j=1

X1XiXjXkXℓX1 |ψ⟩

= X1Xi

 d2∑
j=1

Xj

XkXℓX1 |ψ⟩ = dX1XiXkXℓ |ψ⟩ .

Therefore (G.2) holds and consequently (G.1) holds, so K is an invariant subspace of
X1, . . . , Xd2 .

Secondly, we claim that dimK = d. Let G = (⟨ψ|XiXj |ψ⟩)i,j = (λij)i,j ∈ Md2(C) be
the Gram matrix of the spanning set of K, and let D ∈ Md2(R) be the diagonal matrix
whose kth diagonal entry equals 1

s1k
. Note that dimK = rkG, and D is positive definite.

Observe that GDG = dG. Indeed, the (i, j)-entry of GDG equals

d2∑
k=1

λikλkj
s1k

=
d2∑
k=1

1

s1k
⟨ψ|X1XiXkX1XkXjX1 |ψ⟩ =

d2∑
k=1

⟨ψ|X1XiXkXjX1 |ψ⟩

= ⟨ψ|X1Xi

 d2∑
k=1

Xk

XjX1 |ψ⟩ = ⟨ψ|X1XiXjX1 |ψ⟩ = dλij.

Therefore 1
d

√
DG

√
D is a projection, so

dimK = rkG = rk

(
1

d

√
DG

√
D

)
= tr

(
1

d

√
DG

√
D

)
=

1

d
tr(GD)

=
1

d

d2∑
j=1

λjj
s1j

=
1

d

d2∑
j=1

1

s1j
⟨ψ|X1XjX1 |ψ⟩ =

1

d

 d2∑
j=1

⟨ψ|X1 |ψ⟩

 = d,

as desired. □

Let S be a d2 × d2 matrix whose diagonal entries equal 1 and off-diagonal entries
equal 1

d+1
. In view of Proposition G.4, irreducible representations of BS are in one-to-one

correspondence with SIC-POVMs (symmetric IC-POVMs). An analog of Proposition
G.4 pertaining to mutually unbiased bases is given in [NPA12; GP24]. On the other
hand, AS may have representations that do not arise from SIC-POVMs, as it is shown
by the following example.

Example G.5. Let d = 3 and let S be the 9 × 9 matrix with 1 on the diagonal and 1
4

elsewhere. In other words, S is induced by a SIC-POVM on C3. We will show AS ̸= BS

by producing a 6-dimensional irreducible representation of AS (on the other hand, all
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irreducible representations of BS are 3-dimensional by Proposition G.4). Let ξ = e
πi
12 be

the principal 24th root of unity, and consider nine 6× 6 matrices X1, . . . , X9

I2 ⊕ 04,



1
4

0 −
√
3

4
0 0 0

0 1
4

0 −
√
3

4
0 0

−
√
3

4
0 3

4
0 0 0

0 −
√
3

4
0 3

4
0 0

0 0 0 0 0 0
0 0 0 0 0 0


,



1
4

0
√
3
4

0 0 0

0 1
4

0
√
3
4

0 0√
3
4

0 3
4

0 0 0

0
√
3
4

0 3
4

0 0
0 0 0 0 0 0
0 0 0 0 0 0


,



1
4

0 ξ6

4
0 1√

8ξ5
0

0 1
4

0 ξ6

4
0 −1√

8ξ5
1

4ξ6
0 1

4
0 −ξ√

8
0

0 1
4ξ6

0 1
4

0 ξ√
8

ξ5√
8

0 −1√
8ξ

0 1
2

0

0 −ξ5√
8

0 1√
8ξ

0 1
2


,



1
4

0 1
4ξ6

0 ξ5√
8

0

0 1
4

0 1
4ξ6

0 −ξ5√
8

ξ6

4
0 1

4
0 −1√

8ξ
0

0 ξ6

4
0 1

4
0 1√

8ξ
1√
8ξ5

0 −ξ√
8

0 1
2

0

0 −1√
8ξ5

0 ξ√
8

0 1
2


,



1
4

0 0 ξ6

4
1
4

1
4ξ6

0 1
4

ξ6

4
0 ξ6

4
−1
4

0 1
4ξ6

1
4

0 1
4

ξ6

4
1

4ξ6
0 0 1

4
1

4ξ6
−1
4

1
4

1
4ξ6

1
4

ξ6

4
1
2

0
ξ6

4
−1
4

1
4ξ6

−1
4

0 1
2


,



1
4

0 0 1
4

(−1−
√
3)

8
(1−

√
3)

8

0 1
4

−1
4

0 (1−
√
3)

8
(1+

√
3)

8

0 −1
4

1
4

0 (
√
3−1)
8

(−1−
√
3)

8
1
4

0 0 1
4

(−1−
√
3)

8
(1−

√
3)

8
−1−

√
3

8
1−

√
3

8

√
3−1
8

−1−
√
3

8
1
2

0
1−

√
3

8
1+

√
3

8
−1−

√
3

8
1−

√
3

8
0 1

2


,



1
4

0 0 1
4ξ6

1
4

ξ6

4

0 1
4

1
4ξ6

0 1
4ξ6

−1
4

0 ξ6

4
1
4

0 1
4

1
4ξ6

ξ6

4
0 0 1

4
ξ6

4
−1
4

1
4

ξ6

4
1
4

1
4ξ6

1
2

0
1

4ξ6
−1
4

ξ6

4
−1
4

0 1
2


,



1
4

0 0 −1
4

(−1−
√
3)

8
(
√
3−1)
8

0 1
4

1
4

0 (
√
3−1)
8

(1+
√
3)

8

0 1
4

1
4

0 (
√
3−1)
8

(1+
√
3)

8
−1
4

0 0 1
4

(1+
√
3)

8
(1−

√
3)

8
−1−

√
3

8

√
3−1
8

√
3−1
8

1+
√
3

8
1
2

0√
3−1
8

1+
√
3

8
1+

√
3

8
1−

√
3

8
0 1

2


.

A direct yet tedious calculation shows that X1, . . . , X9 are projections,
∑

j Xj = 3I and
XjXkXj = 1

4
Xj for j ̸= k. Therefore π(xj) = Xj defines a representation π : AS →

M6(C). Furthermore, one can verify that the span of {Xj1Xj2 : 1 ≤ j1, j2 ≤ 9} has
dimension 25. Hence π is not a 2-fold inflation of a 3-dimensional representation or a
direct sum of two 3-dimensional representations (since 25 > 9, 18), so π is an irreducible
representation by Proposition D.1.
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