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Abstract. We introduce a remarkable new family of norms on the space of n× n
complex matrices. These norms arise from the combinatorial properties of sym-
metric functions, and their construction and validation involve probability theory,
partition combinatorics, and trace polynomials in noncommuting variables. Our
norms enjoy many desirable analytic and algebraic properties, such as an ele-
gant determinantal interpretation and the ability to distinguish certain graphs
that other matrix norms cannot. Furthermore, they give rise to new dimension-
independent tracial inequalities. Their potential merits further investigation.

1. Introduction

In this note we introduce a family of norms on complex matrices. These are ini-
tially defined in terms of certain symmetric functions of eigenvalues of complex
Hermitian matrices. The fact that we deal with eigenvalues, as opposed to their
absolute values, is notable. First, it prevents standard machinery, such as the the-
ory of symmetric gauge functions, from applying. Second, the techniques used
to establish that we indeed have norms are more complicated than one might ex-
pect. For example, combinatorics, probability theory, and Lewis’ framework for
group invariance in convex matrix analysis each play key roles.

These norms on the Hermitian matrices are of independent interest. They
can be computed recursively or directly read from the characteristic polyno-
mial. Moreover, our norms distinguish certain pairs of graphs which the standard
norms (operator, Frobenius, Schatten-von Neumann, Ky Fan) cannot distinguish.

Our norms extend in a natural and nontrivial manner to all complex matrices.
These extensions of our original norms involve partition combinatorics and trace
polynomials in noncommuting variables. A Schur convexity argument permits
our norms to be bounded below in terms of the mean eigenvalue of a matrix.

These norms, their unusual construction, and their potential applications sug-
gest a host of open problems. We pose several at the end of the paper.

1.1. Notation. Denote by N, R, and C, respectively, the set of natural numbers,
real numbers, and complex numbers. Let Hn(C) denote the set of n× n complex
Hermitian matrices and Mn(C) the set of n × n complex matrices. Denote the
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eigenvalues of A ∈ Hn(C) by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) and define

λ(A) =
(
λ1(A), λ2(A), . . . , λn(A)

)
∈ Rn.

We may use λ and λ1, λ2, . . . , λn if the matrix A is clear from context. Let
diag(x1, x2, . . . , xn) ∈ Mn(C) denote the n× n diagonal matrix with diagonal en-
tries x1, x2, . . . , xn, in that order. If x = (x1, x2, . . . , xn) is understood from context,
we may write diag(x) for brevity.

1.2. Complete homogeneous symmetric polynomials. The complete homogeneous
symmetric (CHS) polynomial of degree d in the n variables x1, x2, . . . , xn is

hd(x1, x2, . . . , xn) = ∑
1≤i1≤···≤id≤n

xi1 xi2 · · · xid , (1)

the sum of all degree d monomials in x1, x2, . . . , xn [31, Sec. 7.5]. For example,

h0(x1, x2) = 1,

h1(x1, x2) = x1 + x2,

h2(x1, x2) = x2
1 + x1x2 + x2

2, and

h3(x1, x2) = x3
1 + x2

1x2 + x1x2
2 + x3

2.

Elementary combinatorics confirms that there are precisely (n+d−1
d ) summands in

the definition (1). We often write hd(x), in which x = (x1, x2, . . . , xn) ∈ Rn, when
the number of variables is clear from context.

For d even and x ∈ Rn, Hunter proved that hd(x) ≥ 0, with equality if and
only if x = 0 [11]. This is not obvious because some of the summands that
comprise hd(x) (for d even) may be negative. Hunter’s theorem has been reproved
many times; see [2, Lem. 3.1], [3], [5, p. 69 & Thm. 3], [7, Cor. 17], [28, Thm. 2.3],
and [32, Thm. 1].

1.3. Partitions and traces. A partition of d ∈N is an r-tuple π = (π1, π2, . . . , πr) ∈
Nr such that π1 ≥ π2 ≥ · · · ≥ πr and π1 + π2 + · · · + πr = d; the number of
terms r depends on the partition π. We write π ` d if π is a partition of d.

For π ` d, define the symmetric polynomial

pπ(x1, x2, . . . , xn) = pπ1 pπ1 · · · pπr ,

in which pk(x1, x2, . . . , xn) = xk
1 + xk

2 + · · · + xk
n are the power sum symmetric

polynomials. If the length of x = (x1, x2, . . . , xn) is clear from context, we often
write pπ(x) and pk(x), respectively. Another expression for (1) is

hd(x1, x2, . . . , xn) = ∑
π ` d

pπ(x1, x2, . . . , xn)

zπ
, (2)

in which the sum runs over all partitions π = (π1, π2, . . . , πr) of d and

zπ = ∏
i≥1

imi mi!, (3)

where mi is the multiplicity of i in π [31, Prop. 7.7.6]. For example, if π =
(4, 4, 2, 1, 1, 1), then zπ = (133!)(211!)(422!) = 384 [31, (7.17)]. The integer zπ is
precisely the Hall inner product of pπ with itself, in symmetric function theory.

If A ∈ Hn(C) has eigenvalues λ = (λ1, λ2, . . . , λn), then

pπ(λ) = pπ1(λ)pπ2(λ) · · · pπr (λ) = (tr Aπ1)(tr Aπ2) · · · (tr Aπr ). (4)
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This connects eigenvalues, traces, and partitions to symmetric polynomials.

1.4. Main results. The following theorem provides a family of novel norms on
the space Hn(C) of n× n Hermitian matrices. Some special properties of these
norms are discussed in Section 4.

Theorem 1. For even d ≥ 2, the following is a norm on Hn(C):

|||A|||d =
(
hd
(
λ1(A), λ2(A), . . . , λn(A)

))1/d.

For example, equations (2) and (4) yield trace-polynomial representations

|||A|||22 =
1
2
(

tr(A2) + (tr A)2), (5)

|||A|||44 =
1

24
(
(tr A)4 + 6(tr A)2 tr(A2) + 3(tr(A2))2 + 8(tr A) tr(A3) + 6 tr(A4)

)
. (6)

Theorem 1 is nontrivial for several reasons.

(a) The sums (1) and (2) that characterize hd(λ(A)) may contain negative sum-
mands. For example, (tr A) tr(A3) in (6) can be negative for Hermitian A:
consider A = diag(−2, 1, 1, 1).

(b) The sums that define these norms do not involve the absolute values of the
eigenvalues of A. Theorem 1 does not follow from standard considerations,
but rather from delicate properties of multivariate symmetric polynomials.

(c) The relationship between the spectra of (Hermitian) A, B, and A + B, con-
jectured by A. Horn in 1962 [10], was only established in 1998-9 by Kly-
achko [16] and Knutson–Tao [17]. Therefore, the triangle inequality is diffi-
cult to establish. Even if A and B are diagonal, the result is not obvious; see
(12). In fact, even in the “easy” case of positive diagonal matrices this result
has been rediscovered and republished many times; see Remark 14.

(d) Passing from the diagonal case to the general Hermitian case is not straight-
forward. We emphasize again that standard techniques like symmetric gauge
functions are not applicable because of (a). Our proof of this step involves
Lewis’ framework for group invariance in convex matrix analysis [19].

(e) A remarkable general approach to norms on Rn arising from multivariate ho-
mogeneous polynomials is due to Ahmadi, de Klerk, and Hall [1, Thm. 2.1].
Unfortunately, this does not apply in our setting because the convexity of the
even-degree CHS polynomials is hard to establish directly. In fact, Theorem
1 together with [1, Thm. 2.1] imply convexity.

Example 2. Because CHS norms do not rely upon the absolute values of the
eigenvalues of a Hermitian matrix (that is, its singular values), they can some-
times distinguish singularly (adjacency) cospectral graphs (graphs with the same
singular values) that are not adjacency cospectral. This feature is not enjoyed
by many standard norms (e.g., operator, Frobenius, Schatten–von Neumann, Ky
Fan). For example,

K =

0 1 1
1 0 1
1 1 0

 ,
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which has eigenvalues 2,−1,−1, is the adjacency matrix for the complete graph
on three vertices. The graphs with adjacency matrices

A =

[
K 0
0 K

]
and B =

[
0 K
K 0

]
are singularly cospectral but not cospectral: their eigenvalues are −1,−1,−1,−1,
2, 2 and −2,−1,−1, 1, 1, 2, respectively. Moreover, |||A|||66 = 120 6= 112 = |||B|||66.

The norms of Theorem 1 extend in a natural and nontrivial fashion to the space
Mn(C) of all n× n complex matrices.

Theorem 3. Let d ≥ 2 be even and let π = (π1, π2, . . . , πr) be a partition of d. Define
Tπ : Mn(C)→ R by setting Tπ(A) to be 1/( d

d/2) times the sum over the ( d
d/2) possible

locations to place d/2 adjoints ∗ among the d copies of A in

(tr AA · · · A︸ ︷︷ ︸
π1

)(tr AA · · · A︸ ︷︷ ︸
π2

) · · · (tr AA · · · A︸ ︷︷ ︸
πr

).

Then

|||A|||d =

(
∑

π ` d

Tπ(A)

zπ

)1/d

, (7)

in which the sum runs over all partitions π of d and zπ is defined in (3), is a norm on
Mn(C) that restricts to the norm on Hn(C) given by Theorem 1.

If A = A∗, observe that (7) coincides with the norm of Theorem 1 in light of
(2) and (4). We prove Theorems 1 and 3 in the next two sections of this paper.

Example 4. The two partitions of d = 2 satisfy z(2) = 2 and z(1,1) = 2. There are
(2

1) = 2 ways to place two adjoints ∗ in a string of two As. Therefore,

T(2)(A) =
1
2
(

tr(A∗A) + tr(AA∗)
)
= tr(A∗A), and

T(1,1)(A) =
1
2
(
(tr A∗)(tr A) + (tr A)(tr A∗)

)
= (tr A∗)(tr A),

so
|||A|||22 =

1
2

tr(A∗A) +
1
2
(tr A∗)(tr A). (8)

If A = A∗, this simplifies to the norm (5) on Hn(C), as expected.

Example 5. The five partitions of d = 4 satisfy z(4) = 4, z(3,1) = 3, z(2,2) = 8,
z(2,1,1) = 4, and z(1,1,1,1) = 24. There are (4

2) = 6 ways to place two adjoints ∗ in a
string of four As. For example,

6T(3,1)(A) = (tr A∗A∗A)(tr A) + (tr A∗AA∗)(tr A) + (tr A∗AA)(tr A∗)

+ (tr AA∗A∗)(tr A) + (tr AA∗A)(tr A∗) + (tr AAA∗)(tr A∗)

= 3 tr(A∗2 A)(tr A) + 3(tr A2 A∗)(tr A∗).

Some computation and (7) reveal that

|||A|||44 =
1

24
(
(tr A)2 tr(A∗)2 + tr(A∗)2 tr(A2) + 4 tr(A) tr(A∗) tr(A∗A)

+ 2 tr(A∗A)2 + (tr A)2 tr(A∗2) + tr(A2) tr(A∗2) + 4 tr(A∗) tr(A∗A2)

+ 4 tr(A) tr(A∗2 A) + 2 tr(A∗AA∗A) + 4 tr(A∗2 A2)
)
. (9)
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If A = A∗, this simplifies to the norm (6) on Hn(C), as expected.

Because of their origins in terms of complete homogeneous symmetric poly-
nomials, we sometimes refer to the norm ||| · |||d as the CHS norm of order d. The
notation ‖ · ‖ is used, occasionally with subscripts, for other norms.

In the Hermitian case, the norm ||| · |||d can be directly extracted from the Taylor
expansion of an explicit rational function (Theorem 20). The general situation is
elegantly summarized in a determinantal formula.

Theorem 6. Let A ∈ Mn(C). For d even, ( d
d/2)|||A|||dd is the coefficient of zd/2zd/2 in

the Taylor expansion of det(I − zA− zA∗)−1 about the origin.

Helton and Vinnikov showed that polynomials of the form p = det(I − zA−
zA∗) ∈ C[z, z] are precisely the real-zero polynomials in C[z, z] [9]. That is, they
are characterized by the conditions p(0) = 1 and that x 7→ p(αx) has only real
zeros for every α ∈ C. Properties of such polynomials are studied within the
framework of hyperbolic [26] and stable [35] polynomials.

This paper is structured as follows. Sections 2 and 3 contain the proofs of
Theorems 1 and 3, respectively. Section 4 surveys the remarkable properties of
the CHS norms, including Theorem 6. We pose several open questions in Section
5.
Acknowledgments. We thank the anonymous referee for many (forty three to be
exact!) helpful comments and suggestions.

2. Proof of Theorem 1

Let d ≥ 2 be even. We prove that H : Hn(C)→ R defined by

H(A) = hd
(
λ1(A), λ2(A), . . . , λn(A)

)1/d (10)

is a norm. Hunter’s theorem ensures that H(A) ≥ 0 and, moreover, that H(A) = 0
if and only if A = 0 (the nonnegativity of H already follows from (11) below).
Since H(cA) = |c|H(A) for all A ∈ Hn(C) and c ∈ R, it suffices to prove that H
satisfies the triangle inequality. This is accomplished by combining Lewis’ frame-
work for group invariance in convex matrix analysis [19] with a probabilistic
approach to the complete homogeneous symmetric polynomials [2, 28, 32], as we
now explain.

2.1. Group invariance. Let V be a finite-dimensional R-inner product space. The
adjoint ϕ∗ of a linear map ϕ : V → V satisfies 〈ϕ∗(X), Y〉 = 〈X, ϕ(Y)〉 for all
X, Y ∈ V . We say that ϕ is orthogonal if ϕ∗ ◦ ϕ is the identity map on V . Let O(V)
denote the set of all orthogonal linear maps on V. For a subgroup G ⊆ O(V), we
say that f : V → R is G-invariant if f (ϕ(X)) = f (X) for all ϕ ∈ G and X ∈ V .

Definition 7 (Def. 2.1 of [19]). δ : V → V is a G-invariant normal form if

(a) δ is G-invariant,

(b) For each X ∈ V , there is an ϕ ∈ O(V) such that X = ϕ
(
δ(X)

)
, and

(c) 〈X, Y〉 ≤ 〈δ(X), δ(Y)〉 for all X, Y ∈ V .

In this case, (V , G, δ) is called a normal decomposition system.
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Suppose that (V , G, δ) is a normal decomposition system andW ⊆ V is a sub-
space. The stabilizer of W in G is GW = {ϕ ∈ G : ϕ(W) = W}. For convenience,
we restrict the domain of each ϕ ∈ GW and consider GW as a subset of O(W).

Our interest in this material stems from the next result.

Lemma 8 (Thm. 4.3 of [19]). Let (V , G, δ) and (W , GW , δ|W ) be normal decomposition
systems with ran δ ⊆ W ⊆ V . Then a G-invariant function f : V → R is convex if and
only if its restriction toW is convex.

Let V = Hn(C) denote the R-inner product space of complex Hermitian ma-
trices, endowed with the inner product 〈X, Y〉 = tr(XY), and let Un(C) denote
the group of n × n unitary matrices; see Remark 10 for more details about this
inner product. For each U ∈ Un(C), define a linear map ϕU : V → V by
ϕU(X) = UXU∗. Observe that ϕU ◦ ϕV = ϕUV and hence

G = {ϕU : U ∈ Un(C)}

is a group under composition. Since ϕ∗U = ϕU∗ , we conclude that G is a subgroup
of O(V). Moreover, the function (10) is G-invariant.

Let W = Dn(R) denote the set of real diagonal matrices. Then W inherits an
inner product from V and GW = {ϕP : P ∈ Pn}, in which Pn denotes the set of
n× n permutation matrices. Define δ : V → V by

δ(X) = diag
(
λ1(X), λ2(X), . . . , λn(X)

)
,

the n× n diagonal matrix with λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) on its diagonal.
Observe that ran δ ⊆ W since the eigenvalues of a Hermitian matrix are real. We
maintain all of this notation below.

Lemma 9. (V , G, δ) and (W , GW , δ|W ) are normal decomposition systems.

Proof. We first show that (V , G, δ) is a normal decomposition system. (a) Since
eigenvalues are invariant under similarity, δ is G-invariant. (b) For X ∈ V , the
spectral theorem provides a U ∈ Un(C) such that X = Uδ(X)U∗ = ϕU(δ(A)). (c)
For X, Y ∈ V , note that tr XY ≤ tr δ(X)δ(Y) [18, Thm. 2.2]; see Remark 10.

We now show that (W , GW , δ|W ) is a normal decomposition system. (a) δ|W
is GW -invariant since δ(ϕP(X)) = δ(PXP∗) = δ(X) for every X ∈ W and P ∈ Pn.
(b) Let X ∈ W . Since X is diagonal there exists a P ∈ Pn such that X = Pδ(X)P∗ =
ϕP(δ(X)). (c) The diagonal elements of a diagonal matrix are its eigenvalues.
Consequently, this property is inherited from V ; see Remark 11. �

2.2. CHS polynomials as expectations. Let ξ = (ξ1, ξ2, . . . , ξn) be a vector of
independent standard exponential random variables [4, (20.10)], and let x =
(x1, x2, . . . , xn) ∈ Rn. Since E[ξk

i ] = k! for i = 1, 2, . . . , n [4, Ex. 21.3], we de-
duce that

E[〈ξ, x〉d] = E[(ξ1x1 + ξ2x2 · · ·+ ξnxn)
d]

= E

[
∑

k1+k2+···+kn=d

d!
k1! k2! · · · kn!

ξk1
1 ξk2

2 · · · ξ
kn
n xk1

1 xk2
2 · · · x

kn
n

]

= ∑
k1+k2+···+kn=d

d!
k1! k2! · · · kn!

E
[
ξk1

1 ξk2
2 · · · ξ

kn
n xk1

1 xk2
2 · · · x

kn
n

]
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= d! ∑
k1+k2+···+kn=d

E[ξk1
1 ]E[ξk2

2 ] · · ·E[ξkn
n ]

k1! k2! · · · kn!
xk1

1 xk2
2 · · · x

kn
n

= d! ∑
k1+k2+···+kn=d

xk1
1 xk2

2 · · · x
kn
n

= d! hd(x)

for integral d ≥ 1 by the linearity of expectation and the independence of the
ξ1, ξ2, . . . , ξn; see Remark 12. Now suppose that d is even. Then

hd(x) =
1
d!

E
[
|〈ξ, x〉|d

]
≥ 0. (11)

For x, y ∈ Rn, Minkowski’s inequality implies that(
E
[
|〈ξ, x + y〉|d

])1/d
≤
(

E
[
|〈ξ, x〉|d

])1/d
+
(

E
[
|〈ξ, y〉|d

])1/d
,

and hence (for d even)[
hd(x + y)

]1/d ≤
[
hd(x)

]1/d
+
[
hd(y)

]1/d. (12)

2.3. Conclusion. Recall the definition (10) of the function H : Hn(C) → R. The
inequality (12) ensures that the restriction of H to Dn(R) satisfies the triangle
inequality. For A, B ∈ Dn(R) and t ∈ [0, 1], note that

H(tA + (1− t)B) ≤ H(tA) +H((1− t)B) = tH(A) + (1− t)H(B)

by (12) and homogeneity. Thus, H is a convex function on Dn(R). Since H is
G-invariant, we conclude from Lemma 8 that H is convex on Hn(C). It satisfies
the triangle inequality on Hn(C) since it is convex and homogeneous:

1
2H(A + B) = H( 1

2 A + 1
2 B) ≤ 1

2H(A) + 1
2H(B).

Consequently, H( · ) is a norm on Hn(C). �

2.4. Remarks. We collect here a few remarks about the proof of Theorem 1.

Remark 10. Consider the inner product 〈X, Y〉 = tr(XY) on Hn(C); it is the
restriction of the Frobenius inner product to Hn(C). The inequality

tr(XY) ≤ tr δ(X)δ(Y) for X, Y ∈ Hn(C) (13)

is due to von Neumann [34] and has been reproved many times; see de Sá [6],
Lewis [18, Thm. 2.2], Marcus [20], Marshall [21], Mirsky [23, Thm. 1], Richter [27,
Satz. 1], Rendl and Wolkowicz [25, Cor. 3.1], and Theobald [33].

Remark 11. For diagonal matrices, the inequality (13) is equivalent to a classical
rearrangement result: 〈x, y〉 ≤ 〈x̃, ỹ〉, in which where x̃ ∈ Rn has the components
of x = (x1, x2, . . . , xn) in decreasing order [8, Thm. 368].

Remark 12. For even d, (11) implies the nonnegativity of the CHS polynomials.
This probabilistic approach appears in the comments on the blog entry [32], and
in [30, Lem. 12], which cites [2]. There are many other proofs of the nonnegativ-
ity of the even-degree CHS polynomials. Of course, there is Hunter’s inductive
proof [11]. Rovenţa and Temereancă used divided differences [28, Thm. 3.5]. Re-
cently, Böttcher, Garcia, Omar and O’Neill [5] employed a spline-based approach
suggested by Olshansky after Garcia, Omar, O’Neill, and Yih obtained it as a
byproduct of investigations into numerical semigroups [7, Cor. 17].
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Remark 13. The CHS polynomials are a special case of the more general Schur
polynomials

s(n1,n2,...,nN)(u1, u2, . . . , uN) =
det(uni+N−i

j )

det(uN−i
j )

, n1 ≥ n2 ≥ · · · ≥ nN ≥ 0.

These polynomials are also monomial-positive, homogeneous, and symmetric in
the uj, and moreover, carry representation-theoretic content. A natural question is
whether the family of CHS norms on Hermitian matrices is part of a larger family
of “Schur norms.” In other words, is there a converse of Hunter’s positivity result
is valid for other Schur polynomials? Khare and Tao proved that this is not the
case [14, Prop. 6.3]. We thank the referee for pointing out this direction of inquiry.

Remark 14. We stress that the inequality (12) permits x, y ∈ Rn; that is, with no
positivity assumptions. For p ∈N, the similar inequality

hp(x + y)1/p ≤ hp(x)1/p + hp(y)1/p for x, y ∈ Rn
≥0 (14)

has been rediscovered several times. According to McLeod [22, p. 211] and White-
ley [36, p. 49], it was first conjectured by A.C. Aitken. Priority must be given to
Whiteley [36, eq. (5)], whose paper appeared in 1958. McLeod’s paper was re-
ceived on March 16, 1959, although he was unaware of Whiteley’s proof: “To the
best of my knowledge, no proof of [(14)] exists so far in the literature.” For more
exotic inequalities along the lines of (14), see [30].

3. Proof of Theorem 3

The first step in the proof of Theorem 3 is a general complexification result. Let
V be a complex vector space with a conjugate-linear involution v 7→ v∗. Suppose
that the real subspace VR = {v ∈ V : v = v∗} of ∗-fixed points is endowed with
a norm ‖ · ‖. For each v ∈ V and t ∈ R, we have eitv + e−itv∗ ∈ VR. Note that the
path t 7→ ‖eitv + e−itv∗‖ is continuous for each v ∈ V .

Proposition 15. For even d ≥ 2, the following is a norm on V that extends ‖ · ‖:

Nd(v) =
(

1

2π( d
d/2)

∫ 2π

0
‖eitv + e−itv∗‖d dt

)1/d

. (15)

Proof. If v ∈ VR, then ‖eitv + e−itv∗‖ = |2 cos t|‖v‖. Moreover, Nd(v) = ‖v‖ since∫ 2π

0
|2 cos t|d dt = 2π

(
d

d/2

)
.

Next we verify that Nd is a norm on V .

Positive definiteness. The nonnegativity of ‖ · ‖ on VR and (15) ensure that
Nd is nonnegative on V . If v ∈ V\{0}, then v = u + iu′, where u = 1

2 (v + v∗)
and u′ = 1

2 (−iv + iv∗) belong to VR. Now u, u′ cannot both be zero, so the map
t 7→ ‖eitv + e−itv∗‖ = ‖2 cos(t)u + 2 sin(t)u′‖ is continuous and positive almost
everywhere. Thus, Nd(v) 6= 0.

Absolute homogeneity. For r > 0 and θ ∈ R, we have Nd((reiθ)v) = rNd(eiθv) =
rNd(v) by the R-homogeneity of ‖ · ‖ and the periodicity of the integrand in (15).



NORMS ON COMPLEX MATRICES 9

Triangle inequality. For u, v ∈ V ,( ∫ 2π

0
‖eit(u + v) + e−it(u + v)∗‖d dt

)1/d

≤
( ∫ 2π

0

(
‖eitu + e−itu∗‖+ ‖eitv + e−itv∗‖

)d dt
)1/d

≤
( ∫ 2π

0
‖eitu + e−itu∗‖d dt

)1/d

+

( ∫ 2π

0
‖eitv + e−itv∗‖d dt

)1/d

,

where the first inequality holds by monotonicity of power functions and the trian-
gle inequality for ‖ · ‖, and the second inequality holds by the triangle inequality
for the Ld norm on the space C[0, 2π]. �

There are several natural complexifications of a real Banach space [24]. The
extensions Nd in (15) are special since they preserve some of the analytic and
algebraic properties of the original norm. Namely, we will show that when the
extension Nd is applied to the norm ||| · |||d on Hn(C), one obtains a norm on
Mn(C) whose power is a trace polynomial; this does not happen, for example, if
one uses the minimal or the projective complexification of a norm (in which case
the resulting norm is not an algebraic function).

Let 〈x, x∗〉 be the free monoid generated by x and x∗. Let |w| denote the length
of a word w ∈ 〈x, x∗〉 and let |w|x count the occurrences of x in w. For A ∈ Mn(C),
let w(A) ∈ Mn(C) be the natural evaluation of w at A. For example, if w = xx∗x2,
then |w| = 4, |w|x = 3, and w(A) = AA∗A2.

Lemma 16. Let d ≥ 2 be even and let π = (π1, . . . , πr) be a partition of d. If A ∈
Mn(C), then

1
2π

∫ 2π

0
tr(eit A + e−it A∗)π1 · · · tr(eit A + e−it A∗)πr dt

= ∑
w1,...,wr∈〈x,x∗〉 :
|wj |=πj ∀j
|w1···wr |x= d

2

tr w1(A) · · · tr wr(A) . (16)

Proof. For every Laurent polynomial f ∈ C[z, z−1] with the constant term f0 we
have

∫ 2π
0 f (eit) dt = 2π f0. Let us view

f = tr(zA + z−1 A∗)π1 · · · tr(zA + z−1 A∗)πr

as a Laurent polynomial in z. Its constant term is

f0 = ∑
w1,...,wr

tr w1(A) · · · tr wr(A)

where the sum runs over all words w1, w2, . . . , wr in 〈x, x∗〉 with |wj| = πj such
that the number of occurrences of x in w1w2 · · ·wr equals the number of occur-
rences of x∗ in w1w2 · · ·wr. Thus, (16) follows. �
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Given a partition π = (π1, . . . , πr) of d and A ∈ Mn(C) let

Tπ(A) =
1

( d
d/2)

∑
w1,...,wr∈〈x,x∗〉 :
|wj |=πj ∀j
|w1···wr |x= d

2

tr w1(A) · · · tr wr(A).

We now complete the proof of Theorem 3. The conjugate transpose A 7→ A∗

is a real structure on Mn(C). The corresponding real subspace of ∗-fixed points
is Hn(C). We apply Proposition 15 to the norm ||| · |||d on Hn(C) and obtain its
extension Nd(·) to Mn(C) defined by (15). The fact that Nd(A) admits a trace-
polynomial expression as in (7) follows from (2) and Lemma 16.

Concretely, if A ∈ Mn(C) and Nd(B) = ‖B‖ is the CHS-norm over Hermitian
matrices B, then by Proposition 15, the following is a norm on Mn(C):

Nd(A)
(15)
=

(
1

2π( d
d/2)

∫ 2π

0
hd(λ(eit A + e−it A∗))d dt

)1/d

(2)
=

(
1

2π( d
d/2)

∫ 2π

0
∑

π ` d

pπ(λ(eit A + e−it A∗))
zπ

dt

)1/d

(4)
=

(
1

( d
d/2)

∑
π ` d

1
zπ · 2π

∫ 2π

0
tr(eit A + e−it A∗)π1 · · · tr(eit A + e−it A∗)πr dt

)1/d

(16)
=

(
1

( d
d/2)

∑
π ` d

Tπ(A)( d
d/2)

zπ

)1/d

,

which concludes the proof. �

Remark 17. Proving that (7) is a norm relies crucially on Theorem 1, which states
that its restriction to Hn(C) is a norm. On the other hand, demonstrating that (7)
is a norm in a direct manner seems arduous. To a certain degree, this mirrors the
current absence of general certificates for dimension-independent positivity of
trace polynomials in x, x∗ (see [15] for the analysis in a dimension-fixed setting).

Remark 18. For any A ∈ Mn(C) and t ∈ [0, 2π], the matrices eit A + e−it A∗ are
Hermitian. Thus, |||eit A + e−it A∗|||d can be defined as in Theorem 1 and hence

|||A|||d =

(
1

2π( d
d/2)

∫ 2π

0
|||eit A + e−it A∗|||dd dt

)1/d

. (17)

Remark 19. Here is another way to restrict ||| · |||d to the Hermitian matrices. The
proof of Lemma 16 shows that ( d

d/2)|||A|||dd is the coefficient of zd/2z̄d/2 in

|||zA + zA∗|||dd ∈ C[z, z].

4. Properties of CHS norms

We now establish several properties of the CHS norms. First, we show how the
CHS norm of a Hermitian matrix can be computed rapidly and exactly from its
characteristic polynomial and recursion (Subsection 4.1). This leads quickly to the
determinantal interpretation presented in the introduction (Subsection 4.2). Next,
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we identify those CHS norms induced by inner products (Subsection 4.3). In Sub-
section 4.4, we use Schur convexity to provide a lower bound on the CHS norms
in terms of the trace seminorm on Mn(C). We discuss monotonicity properties in
Subsection 4.5 and symmetric tensor powers in Subsection 4.6.

4.1. Exact computation via characteristic polynomial. The CHS norm of a Her-
mitian matrix can be exactly computed from its characteristic polynomial. The
following theorem involves only formal series manipulations.

Theorem 20. Let pA(x) denote the characteristic polynomial of A ∈ Hn(C). For d ≥ 2
even, |||A|||dd is the dth coefficient in the Taylor expansion of

1
det(I − xA)

=
1

xn pA(1/x)

about the origin.

Proof. Let pA(x) = (x− λ1)(x− λ2) · · · (x− λn). For |x| small, [32, (1)] provides
∞

∑
d=0

hd(λ1, λ2, . . . , λn)xd =
n

∏
k=1

1
1− λkx

=
1
xn

n

∏
k=1

1
x−1 − λk

=
1

xn pA(1/x)
;

the apparent singularity at the origin is removable. Now observe that
n

∏
k=1

1
1− λkx

=
1

det diag(1− λ1x, 1− λ2x, . . . , 1− λnx)
=

1
det(I − xA)

by the spectral theorem. �

Example 21. Let A =

[
1 1
1 0

]
. Then pA(z) = x2 − x− 1 and

1
x2 pA(1/x)

=
1

1− x− x2 =
∞

∑
n=0

fn+1xn,

in which fn is the nth Fibonacci number; these are defined by fn+2 = fn+1 + fn
and f0 = 0 and f1 = 1. Thus, |||A|||dd = fd for even d ≥ 2.

Remark 22. If A ∈ Hn(C) is fixed, the sequence hd(λ1, λ2, . . . , λn) satisfies a
constant-coefficient recurrence of order n since its generating function is a ra-
tional function whose denominator has degree n. Solving such a recurrence is
elementary, so one can compute ‖A‖d for d = 2, 4, 6, . . . via this method.

Remark 23. For small d, there is a simpler method. Since pA(x) is monic, it
follows that p̃A(x) = xn pA(1/x) has constant term 1. For small x, we have

∞

∑
d=0

hd(λ1, λ2, . . . , λn)xd =
1

p̃A(x)
=

1
1− (1− p̃A(x))

=
∞

∑
d=0

(1− p̃A(x))d

so the desired hd(λ1, λ2, . . . , λn) can be computed by the expanding the geometric
series to the appropriate degree.

Remark 24. For d ≥ 1, the Newton–Gerard identities imply

hd(x1, x2, . . . , xn) =
1
d

d

∑
i=1

hd−i(x1, x2, . . . , xn)pi(x1, x2, . . . , xn);
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see [29, §10.12]. For A ∈ Hn(C) and d ≥ 2 even, it follows that

hd(λ(A)) =
1
d

d

∑
i=1

hd−i(λ(A)) tr(Ai),

which can be used to compute |||A|||dd = hd(λ(A)) recursively.

Remark 25. If H, K ∈ Hn(C), then det(I − xH) = det(I − xK) if and only if they
are unitarily similar. However, H = diag(1, 0) and K = diag(1,−1) give

1
det(I − xH)

=
1

1− x
=

∞

∑
j=0

zj and
1

det(I − xK)
=

1
1− x2 =

∞

∑
k=0

z2k,

so |||H|||d = |||K|||d for even d ≥ 2. Of course, the odd-indexed coefficients (the
complete homogeneous symmetric polynomials of odd degree) do not agree.

4.2. Determinantal interpretation. The material of the previous subsection leads
to the determinantal interpretation (Theorem 6) stated in the introduction. We
restate (and prove) the result here for convenience:

Theorem 26. Let A ∈ Mn(C). For d even, ( d
d/2)|||A|||dd is the coefficient of zd/2zd/2 in

the Taylor expansion of det(I − zA− zA∗)−1 about the origin.

Proof. If H ∈ Hn(C), the coefficient of xd in det(I − xH)−1 is |||H|||dd by Theorem
20. By plugging in H = zA+ zA∗ and treating the resulting expression as a series
in z and z, Remark 19 implies that the coefficient of zd/2zd/2 equals ( d

d/2)|||A|||dd. �

Example 27. Let A =

[
0 1
0 0

]
. Then

det(I − zA− zA∗)−1 =
1

1− zz
=

∞

∑
n=0

znzn,

and hence ‖A‖d
d = ( d

d/2)
−1

for even d ≥ 2.

Example 28. For

A =

0 1 0
0 0 1
1 0 0

 , we have det(I − zA− zA∗)−1 =
1

1− z3 − 3zz− z3 .

Computer algebra reveals that |||A|||22 = |||A|||44 = 3
2 , |||A|||66 = 29

20 , and |||A|||88 = 99
70 .

Example 29. The matrices

A =

0 0 0
0 1 i
0 i −1

 and B =

0 0 1
0 0 i
1 i 0


satisfy

det(I − zA− zA∗)−1 =
1

1− 4zz
= det(I − zB− zB∗)−1,

so |||A|||d = |||B|||d for even d ≥ 2. These matrices are not similar (let alone unitarily
similar) since A is nilpotent of order two and B is nilpotent of order three.
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Remark 30. In terms of the Laplace operator ∆ = ∂2

∂z ∂z , Theorem 6 states that for
even d,

d!|||A|||dd = ∆d/2 1
det(I − zA− zA∗)

(0) .

4.3. Inner products. Theorem 3 says that ||| · |||d is a norm on Mn(C) for even
d ≥ 2. It is natural to ask when these norms are induced by an inner product.

Theorem 31. The norm ||| · |||d on Mn(C) (and its restriction to Hn(C)) is induced by
an inner product if and only if d = 2 or n = 1

Proof. If n = 1 and d ≥ 2 is even, then |||A|||d is a fixed positive multiple of |a| for
all A = [a] ∈ M1(C). Thus, ||| · |||d on M1(C) is induced by a positive multiple of
the inner product 〈A, B〉 = ba, in which A = [a] and B = [b].

If d = 2 and n ≥ 1, then |||A|||22 = 1
2 tr(A∗A) + 1

2 (tr A) tr(A∗), which is induced
by the inner product 〈A, B〉 = 1

2 tr(B∗A) + 1
2 (tr B∗)(tr A) on Mn(C).

It suffices to show that in all other cases the norm |||A|||d = (hd(λ(A)))1/d on
Hn(R) does not arise from an inner product. For n ≥ 2, let A = diag(1, 0, 0, . . .)
and B = diag(0, 1, 0, . . . , 0) ∈ Hn(R). Then |||A|||2d = |||B|||2d = 1. Next observe that
|||A + B|||2d = (d + 1)2/d since there are exactly d + 1 nonzero summands, each
equal to 1, in the evaluation of hd(λ(A + B)). Because of cancellation, a similar
argument shows that |||A− B|||2d = 1. A result of Jordan and von Neumann says
that a vector space norm ‖ · ‖ arises from an inner product if and only if it satisfies
the parallelogram identity ‖x + y‖2 + ‖x− y‖2 = 2

(
‖x‖2 + ‖y‖2) for all x, y [13].

If ||| · |||d satisfies the parallelogram identity, then (d + 1)2/d + 1 = 2(1 + 1); that
is, (d + 1)2 = 3d. The solutions are d = 0 (which does not yield an inner product)
and d = 2 (which, as we showed above, does). Thus, for n ≥ 2 and d ≥ 2, the
norm ||| · |||d on Hn(C) does not arise from an inner product. �

4.4. A tracial lower bound. Each CHS norm on Mn(C) is bounded below by an
explicit positive multiple of the trace seminorm. That is, the CHS norms of a
matrix can be related to its mean eigenvalue.

Theorem 32. For A ∈ Mn(C) and d ≥ 2 even,

|||A|||d ≥
(

n + d− 1
d

)1/d | tr A|
n

with equality if and only if A is a multiple of the identity.

Proof. Let d ≥ 2 be even. For x = (x1, x2, . . . , xn) ∈ Rn, let x̃ = (x̃1, x̃2, . . . , x̃n)
denote its decreasing rearrangement (the notation x↓ is frequently used in the
literature). Then x majorizes y, denoted x � y, if

k

∑
i=1

x̃i ≥
k

∑
i=1

ỹi for k = 1, 2, . . . , n, and
n

∑
i=1

xi =
n

∑
i=1

yi.

The even-degree complete homogeneous symmetric polynomials are Schur con-
vex [32, Thm. 1]. That is, hd(x) ≥ hd(y) whenever x � y, with equality if and
only if x is a permutation of y.



14 K. AGUILAR, Á. CHÁVEZ, S.R. GARCIA, AND J. VOLČIČ

Let A ∈ Mn(C) and define B(t) = eit A + e−it A∗ for t ∈ R. Then λ(B(t))
majorizes µ(t) = (µ(t), µ(t), . . . , µ(t)) ∈ Rn, in which µ(t) = tr B(t)/n. Thus,

|||B(t)|||dd = hd
(
λ(B(t))

)
≥ hd

(
µ(t)

)
= µ(t)d

(
n + d− 1

d

)
with equality if and only if B(t) = µ(t)I. It follows from (17) that

|||A|||d ≥
(
(n+d−1

d )

2π( d
d/2)

∫ 2π

0
µ(t)d dt

)1/d

. (18)

Combine this with∫ 2π

0
µ(t)d dt =

∫ 2π

0

(
tr B(t)

n

)d
dt =

1
nd

∫ 2π

0

(
eit tr A + e−it tr(A∗)

)d dt

=
1

nd

d

∑
k=0

(
d
k

)
(tr A∗)d−k(tr A)k

∫ 2π

0
ei(2k−d)t dt

=
2π

nd

(
d

d/2

)
| tr A|d

and get the desired inequality. The continuity of the integrand ensures that equal-
ity occurs in (18) if and only if B(t) = µ(t)I for all t ∈ R. An operator-valued
Fourier expansion reveals that eit A + e−it A∗ = (∑n∈Z µ̂(n)eint)I, so A = µ̂(1)I.
Conversely, equality holds in (18) if A is a multiple of the identity. �

Remark 33. For each fixed n ≥ 1, the constant (n+d−1
d )

1/d
in Theorem 32 tends to

1 from above as d→ ∞. Therefore, |||A|||d ≥ 1
n | tr A| for all A ∈ Mn(C).

4.5. Monotonicity. The next result shows how CHS norms relate to each other.
For Hermitian matrices, the first inequality below is superior to the second.

Theorem 34. Let 2 ≤ p < q be even.

(a) If A ∈ Hn(C), then (p!)1/p|||A|||p ≤ (q!)1/q|||A|||q.

(b) If A ∈ Mn(C), then
(
( p

p/2)p!
)1/p|||A|||p ≤

(
( q

q/2)q!
)1/q|||A|||q.

Proof. (a) Let A ∈ Hn(C) have eigenvalues λ = (λ1, λ2, . . . , λn), listed in decreas-
ing order, and let ξ = (ξ1, ξ2, . . . , ξn) be a random vector, in which ξ1, ξ2, . . . , ξn
are independent standard exponential random variables. Let d ≥ 2 be even and
consider the random variable X = 〈ξ, λ〉. Then (11) ensures that

(d!)1/d|||A|||d =
(
d! hd(λ)

)1/d
= E

[
|〈ξ, λ〉|d

]1/d
= E[|X|d]1/d = ‖X‖Ld .

Since we are in a probability space (in particular, a finite measure space), ‖X‖Lp ≤
‖X‖Lq for 1 ≤ p < q < ∞. For 2 ≤ p < q even, this yields the desired inequality.

(b) Let A ∈ Mn(C) and let 2 ≤ p < q be even. For t ∈ [0, 2π], (a) ensures that

|||eit A + e−it A∗|||pp ≤
(q!)p/q

p!
|||eit A + e−it A∗|||pq .
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Consider f (t) = |||eit A + e−it A∗|||q as an element of Lp[0, 2π]. Hölder’s inequality
and (17) imply the desired inequality:

|||A|||p =

(
1

2π( p
p/2)

∫ 2π

0
|||eit A + e−it A∗|||pp dt

)1/p

≤
(

1
2π( p

p/2)

)1/p(
(q!)p/q

p!

∫ 2π

0
|||eit A + e−it A∗|||pq dt

)1/p

≤ (q!)1/q

(p!)1/p

(
1

2π( p
p/2)

)1/p

‖ f ‖Lp ≤ (q!)1/q

(p!)1/p

(
1

2π( p
p/2)

)1/p

(2π)
1
p−

1
q ‖ f ‖Lq

≤ (q!)1/q

(p!)1/p

(
1

2π( p
p/2)

)1/p

(2π)
1
p−

1
q

( ∫ 2π

0
|||eit A + e−it A∗|||qq dt

)1/q

=
(q!)1/q

(p!)1/p

(
1

( p
p/2)

)1/p

(2π)
− 1

q

(
2π

(
q

q/2

))1/q

|||A|||qq

≤

(
( q

q/2)q!
)1/q(

( p
p/2)p!

)1/p |||A|||
q
q. �

Remark 35. The previous result suggests that suitable constant multiples of the
CHS norms may be preferable in some circumstances. However, the benefits
appear to be outweighed by the cumbersome nature of these constants.

Remark 36. For A, B ∈ Mn(C),

2|||AB|||22 = tr(AB) tr((AB)∗) + tr((AB)∗AB)

≤ 2 tr(A∗A) tr(B∗B)

≤ 2
(

tr(A) tr(A∗) + tr(A∗A)
)(

tr(B) tr(B∗) + tr(B∗B)
)

= 8|||A|||22|||B|||22,

so 2||| · |||2 is submultiplicative. Actually, 2 is the smallest constant independent of
n with this property, since

J =
[

0 1
0 0

]
satisfies |||J J∗|||2 = 1 = 2|||J|||2|||J∗|||2.

4.6. Symmetric Tensor Powers. Let V denote an n-dimensional R-inner product
space with orthonormal basis v1, v2, . . . , vn. The kth tensor power of V is the nk-
dimensional R-inner product space V⊗k spanned by the simple tensors

vi1 ⊗ vi2 ⊗ · · · ⊗ vik , (19)

with these simple tensors forming an orthonormal basis of V⊗k. An operator
A : V → V lifts to an operator on V⊗k as follows. Define

A⊗k(vi1 ⊗ vi2 ⊗ · · · ⊗ vik ) = Avi1 ⊗ Avi2 ⊗ · · · ⊗ Avik
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and use the linearity of A and ⊗ to write this in terms of the basis vectors (19). An
important fact is that any orthonormal basis for V yields, via (19), an orthonormal
basis for V⊗k.

The kth symmetric tensor power of V is the (n+k−1
k )-dimensional vector space

Symk V ⊂ V⊗k spanned by the symmetric tensors:

vi1 � vi2 � · · · � vik =
1
k! ∑

σ∈Sk

vσ(i1) ⊗ vσ(i2) ⊗ · · · ⊗ vσ(ik),

where Sk denotes the symmetric group on k letters. Let ASymk denote the restric-
tion A⊗k|Symk V .

Proposition 37. If d ≥ 2 is even and A ∈ Hn(C), then

|||A|||dd = tr(ASymd).

Proof. Let A : V → V be selfadjoint with eigenvalues λ1, λ2, . . . , λn and corre-
sponding orthonormal eigenbasis v1, v2, . . . , vn. Then vi1 � vi2 � · · · � vik is an
eigenvector of ASymk with eigenvalue λi1 λi2 · · · λik . Sum over these (n+k−1

k ) eigen-
vectors and conclude that tr(ASymk ) = hk(λ1, λ2, . . . , λn). �

If A is the adjacency matrix of a graph Γ, then |||A|||d concerns the dth symmet-
ric tensor power of Γ, a weighted graph obtained from Γ in a straightforward (but
tedious) manner by computing the matrix representation of ASymd with respect
to the normalization of the orthogonal basis of symmetrized tensors.

4.7. Equivalence constants. Any two norms on a finite-dimensional vector space
are equivalent. Thus, each norm ||| · |||d on Hn(C) (with d ≥ 2 even) is equivalent to
the operator norm ‖ · ‖op. We compute admissible equivalence constants below.

Theorem 38. For A ∈ Hn(C) and even d ≥ 2,(
1

2
d
2 ( d

2 )!

)1/d

‖A‖op ≤ |||A|||d ≤
(

n + d− 1
d

)1/d
‖A‖op

The upper inequality is sharp if and only if A is a multiple of the identity.

Proof. For A ∈ Hn(C) and even d ≥ 2, the triangle inequality yields

|||A|||dd = hd(λ1(A), λ2(A), . . . , λn(A))

=
∣∣hd(λ1(A), λ2(A), . . . , λn(A))

∣∣
≤ hd(|λ1(A)|, |λ2(A)|, . . . , |λn(A)|)
≤ hd(‖A‖op, ‖A‖op, . . . , ‖A‖op)

= ‖A‖d
ophd(1, 1, . . . , 1)

= ‖A‖d
op

(
n + d− 1

d

)
.

Equality occurs if and only if λi(A) = |λi(A)| = ‖A‖op for 1 ≤ i ≤ n; that is, if
and only if A is a multiple of the identity.

Hunter [11] established that

h2p(x) ≥ 1
2p p!
‖x‖2p,
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in which ‖x‖ denotes the Euclidean norm of x ∈ Rn. Let d = 2p and conclude

|||A|||d ≥
(

1

2
d
2 ( d

2 )!

)1/d

‖A‖F ≥
(

1

2
d
2 ( d

2 )!

)1/d

‖A‖op,

in which ‖A‖F denotes the Frobenius norm of A ∈ Hn(C). �

Remark 39. For A ∈ Mn(C), we may apply the upper bound in Theorem 38 to
eit A + e−it A∗ and use (15) to deduce that

|||A|||d ≤
(
(n+d−1

d )

2π( d
d/2)

∫ 2π

0
‖eit A + e−it A∗‖d

op dt

)1/d

≤ 2

(
(n+d−1

d )

( d
d/2)

)1/d

‖A‖op.

Remark 40. Hunter’s lower bound was improved by Baston [3], who proved that

h2p(x) ≥ 1
2p p!

( n

∑
i=1

x2
i

)p

+ λp

( n

∑
i=1

xi

)2p

for x = (x1, x2, . . . , xn) ∈ Rn, where

λp =
1

np

((
n + 2p− 1

2p

)
1

np −
1

2p p!

)
> 0.

Equality holds if and only if p = 1 or p ≥ 2 and all the xi are equal. However,
Baston’s result does not appear to yield a significant improvement in the lower
bound of Theorem 38.

5. Open Questions and Remarks

The answers to the following questions have eluded us.

Problem 1. What are the best constants cd, independent of n, such that cd‖ · ‖d is
submultiplicative? Do such constants exists? See Remark 36.

Problem 2. What is the best complexified version of Theorem 38? Can the upper bound
be improved (the estimate ‖eit A + e−it A∗‖op ≤ 2‖A‖op seems wasteful on average)?
Can we get a sharp lower bound?

Problem 3. If one uses (7) to evaluate |||A|||dd, there are many repeated terms. For exam-
ple, (tr A∗A)(tr A)(tr A∗) = (tr AA∗)(tr A∗)(tr A) because of the cyclic invariance of
the trace and the commutativity of multiplication. If one chooses a single representative
for each such class of expressions and simplifies, one gets expressions such as (8) and (9).
Is there a combinatorial interpretation of the resulting coefficients?

For motivation, the reader is invited to consider

|||A|||66 =
1

720

(
(tr A)3 tr(A∗)3 + 3 tr(A) tr(A∗)3 tr(A2)

+ 9(tr A)2 tr(A∗)2 tr(A∗A) + 9 tr(A∗)2 tr(A2) tr(A∗A)

+ 18 tr(A) tr(A∗) tr(A∗A)2 + 6 tr(A∗A)3 + 3(tr A)3 tr(A∗) tr(A∗2)

+ 9 tr(A) tr(A∗) tr(A2) tr(A∗2) + 9(tr A)2 tr(A∗A) tr(A∗2)

+ 9 tr(A2) tr(A∗A) tr(A∗2) + 2 tr(A∗)3 tr(A3)

+ 6 tr(A∗) tr(A∗2) tr(A3) + 18 tr(A) tr(A∗)2 tr(A∗A2)

+ 36 tr(A∗) tr(A∗A) tr(A∗A2) + 18 tr(A) tr(A∗2) tr(A∗A2)
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+ 18(tr A)2 tr(A∗) tr(A∗2 A) + 18 tr(A∗) tr(A2) tr(A∗2 A)

+ 36 tr(A) tr(A∗A) tr(A∗2 A) + 36 tr(A∗A2) tr(A∗2 A)

+ 2(tr A)3 tr(A∗3) + 6 tr(A) tr(A2) tr(A∗3)

+ 4 tr(A3) tr(A∗3) + 18 tr(A∗)2 tr(A∗A3)

+ 18 tr(A∗2) tr(A∗A3) + 18 tr(A) tr(A∗) tr(A∗AA∗A)

+ 18 tr(A∗A) tr(A∗AA∗A) + 36 tr(A) tr(A∗) tr(A∗2 A2)

+ 36 tr(A∗A) tr(A∗2 A2) + 18(tr A)2 tr(A∗3 A)

+ 18 tr(A2) tr(A∗3 A) + 36 tr(A∗) tr(A∗AA∗A2)

+ 36 tr(A∗) tr(A∗2 A3) + 36 tr(A) tr(A∗2 AA∗A)

+ 36 tr(A) tr(A∗3 A2) + 12 tr(A∗AA∗AA∗A) + 36 tr(A∗2 A2 A∗A)

+ 36 tr(A∗2 AA∗A2) + 36 tr(A∗3 A3)
)

.

Remark 41. The recent paper of Issa, Mourad, and Abbas [12] contains results
similar to ours, but obtained with different techniques. However, their paper
deals with symmetric gauge functions and hence invokes positivity assumptions
that we have eschewed. Remarkably, these papers were written independently
and nearly simultaneously: our paper appeared on the arXiv on 3 June 2021,
whereas the preprint of [12] appeared on 7 June 2021.
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