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Abstract. Self-testing is a powerful certification of quantum systems relying on measured,

classical statistics. This paper considers self-testing in bipartite Bell scenarios with small

number of inputs and outputs, but with quantum states and measurements of arbitrarily

large dimension. The contributions are twofold. Firstly, it is shown that every maximally

entangled state can be self-tested with four binary measurements per party. This result

extends the earlier work of Mančinska-Prakash-Schafhauser (2021), which applies to max-

imally entangled states of odd dimensions only. Secondly, it is shown that every single

local binary projective measurement can be self-tested with five binary measurements per

party. A similar statement holds for self-testing of local projective measurements with more

than two outputs. These results are enabled by the representation theory of quadruples

of projections that add to a scalar multiple of the identity. Structure of irreducible rep-

resentations, analysis of their spectral features and post-hoc self-testing are the primary

methods for constructing the new self-tests with small number of inputs and outputs.

1. Introduction

Thanks to non-locality of quantum theory, unknown non-communicating quantum devices

measuring an unknown shared entangled state can sometimes be identified based on classical

statistic of their outputs. This phenomenon is called self-testing, and is the strongest form of

device-independent certification of quantum systems. Self-testing was introduced in [MY04],

and has been a heavily studied subject ever since; see [ŠB20] for a comprehensive review of

major advances on this topic. The immense interest attracted by self-testing originates from

its applications in device-independent quantum cryptography [ABG+07, FGa21], delegated

quantum computation [CGJV19], randomness generation [MS16, BMP18], entanglement

detection [BvCA18], and computational complexity [FJVY19, JNV+21]. For experimental

developments, see [HBD+15, SSK+23].

This paper focuses on self-testing in bipartite Bell scenarios [BCP+14], where two parties

randomly perform measurements on a shared quantum state without communicating. From

these measurements, joint probability distribution of inputs and outputs of both parties

can be constructed as classical data describing the system. Suppose that each party can
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perform N measurements, each of them with K outcomes. Borrowing terminology from

quantum games, we model this setup with bipartite quantum strategies. Namely, an N -

input K-output strategy S of two parties (subsystems) A and B consists of a bipartite

quantum state |ψ⟩ in the tensor product of Hilbert spaces HA and HB, a measurement

(Mi,a)
K
a=1 of positive operators on HA for each i = 1, . . . , N , and a measurement (Nj,b)

K
b=1

of positive operators on HB for each j = 1, . . . , N . The correlation of S is the array p of

probabilities given by the Born rule p(a, b|i, j) = ⟨ψ|Mi,a ⊗ Nj,b |ψ⟩, and is the classically

observable data induced by S. There are two trivial modifications of the strategy S that do

not affect its correlation: one is a unitary change of local bases, and the other is extending

the state with an ancillary state on which the measurements act trivially. If any other

strategy with correlation p is obtained from S using these trivial modifications, then we

say that S is self-tested by p. That is, the state and measurements in a self-tested strategy

are essentially uniquely determined by the correlation. The most renowned example of a

self-tested strategy (with 2 inputs and 2 outputs) consists of maximally entangled qubits

and two pairs of Pauli measurements, which give the maximal quantum violation of the

famous CHSH inequality [CHSH69, Tsi87, MY04].

The following is a fundamental self-testing problem:

(⋆) Which states and which measurements can be self-tested, i.e., appear in a strategy that is

self-tested by its correlation? Furthermore, how complex is such a strategy, e.g., how many

inputs and outputs per party are required?

The breakthrough on (⋆) for quantum states was achieved in [CGS17], where the authors

showed that every entangled bipartite state can be self-tested. The number of inputs in the

provided self-tests grows with the local dimension n of the quantum state under investigation,

which makes these self-tests rather complicated in large dimensions. The existence result of

[CGS17] was later not only extended to multipartite states in quantum networks [ŠBR+23]

and refined in one-sided device-independent scenarios [SBJ+23], but also improved in terms

of inputs and outputs needed to self-test certain states. In [SSKA21], the authors show that

an n-dimensional maximally entangled bipartite state can be self-tested using 2 inputs and n

outputs. The paper [Fu22] was the first to provide constant-sized self-tests for some infinite

families of maximally entangled states of even dimension (but not constant-sized self-tests

for all maximally entangled states of even dimension). This result was complemented by

[MPS21], where the authors establish that maximally entangled state of any odd dimension

can be self-tested using 4 inputs and 2 outputs.

In comparison with states, the progress on (⋆) for measurements has been more con-

strained. All two-dimensional projective measurements have been self-tested [YN13], and

likewise tensor products of Pauli measurements [McK17, Col17]. Recently, it has been es-

tablished that every projective measurement can be self-tested [CMV23]. Actually, the

self-tests derived in [CMV23] allow for arbitrary real ensembles of projective measurements
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to be self-tested simultaneously. However, self-testing an n-dimensional projective measure-

ment in this manner requires roughly n2 inputs.

Contributions. This paper provides self-tests for all maximally entangled states and all

single local projective measurements, respectively, that are uniform in number of both inputs

and outputs. The first main result concerns maximally entangled states.

Theorem A (Corollary 5.4). Maximally entangled bipartite state of any local dimension d

can be self-tested using 4 inputs and 2 outputs.

The strategies of Theorem A are given in Definition 5.1. Their construction and self-

testing feature arises from the one-parametric family of universal C*-algebras A2− 1
n
gener-

ated by four projections adding up to 2 − 1
n
times the identity. Remarkable results about

representations of these algebras were established by Kruglyak-Rabanovich-Samŏılenko us-

ing Coxeter functors between representation categories [KRS02]. Their theory is essential

in the proof of Theorem A. Representations of C*-algebras of this type have already been

leveraged in [MPS21]. However, their work uses a different family of parameters (2 − 2
n

for odd n, instead of 2− 1
n
for natural n) that leads to simple C*-algebras, and maximally

entangled states of odd dimensions only. On the other hand, exploiting algebras A2− 1
n

for self-testing purposes requires a more sophisticated analysis of their representations, but

applies to all maximally entangled states.

The second main result of this paper provides constant-sized self-tests for single local

projective measurements with 2 outputs, i.e., binary projective measurements. Note that a

local binary projective measurement (P, I−P ) is, up to unitary change of local basis, given

by a real matrix, and determined by the dimension n and the rank r of the projection P .

Theorem B (Corollary 5.11). A single local binary projective measurement of any dimen-

sion n and rank r appears in a 5-input 2-output strategy that is self-tested by its correlation.

See Definition 5.9 for the explicit strategies used in Theorem B. A generalization of

Theorem B for local non-binary projective measurements is given in Corollary 5.13. It is

important to stress both the significance and the limitation of Theorem B. Given a single

projective measurement, Theorem B provides a small self-testing strategy that contains this

measurement. Note that up to a choice of coordinate system, a given projective measurement

always admits a real matrix presentation. However, Theorem B does not address self-testing

of ensembles of projective measurements; from this perspective, it is weaker than [CMV23],

which provides (large) self-tests for all real ensembles of projective measurements. The

strategies of Theorem B are obtained from the strategies of Theorem A by the principle

of post-hoc self-testing [ŠB20]. A broad sufficiency criterion for applicability of post-hoc

self-testing was presented in [CMV23]. To apply this criterion in the proof of Theorem

B, certain spectral aspects of representations of A2− 1
n
need to be resolved. Namely, we

determine the spectrum of the sum of pairs of projections arising from representations of

A2− 1
n
.
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While the derivation of the newly presented self-tests might seem rather abstract, the

resulting correlations admit closed-form expressions, and the corresponding strategies can

recursively constructed using basic tools from linear algebra (see Appendix A for examples).

Reader’s guide. Section 2 reviews the standard terminology and notation on quantum

strategies and self-testing. Section 3 presents a construction of four n× n projections that

add to 2 − 1
n
times identity, and their basic properties; these projections are central to

this paper, and provide local projective measurements for the new self-tested strategies.

Section 4 establishes certain spectral results about these projections, which are critical

for demonstrating self-testing in this paper. While this section provides the main new

mathematical insight into what is required to establish the new self-testing results, a reader

only interested in main statements may skip this section. Section 5 presents the new self-

tested strategies and their correlations. Section 6 addresses obstructions to constant-sized

self-testing of arbitrary entangled states and pairs of projective measurements. Lastly,

Appendix A explicitly constructs the distinguished projections appearing in self-tests for

local dimensions up to 6.

Acknowledgments. The author thanks Ken Dykema for inspiring conversations about

self-testing, and Ricardo Gutierrez-Jauregui for sharing his expertise on experimental as-

pects of quantum theory.

2. Preliminaries

This section introduces notation and terminology on quantum strategies and self-testing,

following the conventions presented in [MPS21]. For a comprehensive overview, see [ŠB20].

Let K ∈ N. A K-tuple of operators (Pa)
K
a=1 acting on a Hilbert space H is a positive

operator-valued measure (K-POVM) if Pa ⪰ 0 and
∑K

a=1 Pa = I. If all Pa are projections,

then (Pa)
K
a=1 is a projection-valued measure (K-PVM), or a projective measurement. Note

that, up to a unitary basis change, a PVM (Pa)
K
a=1 is uniquely determined by the ranks rkPa

for a = 1, . . . , K. That is, every K-PVM with ranks of projections r1, . . . , rK is unitarily

equivalent to (
Ir1 ⊕ 0r2+···+rK , 0r1 ⊕ Ir2 ⊕ 0r3+···+rK , . . . , 0r1+···+rK−1

⊕ IrK
)
.

A 2-POVM is also called a binary measurement. Observe that a binary PVM is simply a

pair (P, I − P ) where P is a projection, and is determined by the dimension and the rank

of P up to a unitary basis change.

A (pure bipartite) state |ψ⟩ is a unit vector in HA ⊗ HB, where HA,HB are Hilbert

spaces. We say that |ψ⟩ has full Schmidt rank if P ⊗ I |ψ⟩ = I ⊗ Q |ψ⟩ = 0 for some

projections P,Q implies P = 0 and Q = 0. In this case, the Hilbert spaces HA and HB are

isomorphic. For n ∈ N, the (canonical) maximally entangled state of local dimension n is
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|ϕn⟩ = 1√
n

∑n
i=1 |i⟩|i⟩ ∈ Cn ⊗ Cn. For A,B ∈ Mn(C),

⟨ϕn|A⊗B |ϕn⟩ = τ(ABt) =
1

n
tr(ABt),

where τ denotes the normalized trace on Mn(C).
LetKA, KB, NA, NB ∈ N. An (NA, NB)-input (KA, KB)-output bipartite quantum strategy

S is a triple

S = (|ψ⟩ ;M1, . . . ,MNA
;N1, . . . ,NNB

)

where Mi are KA-POVMs on a finite-dimensional Hilbert space HA, Nj are KB-POVMs on

a finite-dimensional Hilbert space HB, and |ψ⟩ ∈ HA⊗HB is a state. When K = KA = KB

and N = NA = NB, we simply say that S is a N-input K-output bipartite strategy. The

correlation of S is the NA ×NB ×KA ×KB array p with entries

p(a, b|i, j) = ⟨ψ|Mi,a ⊗Nj,b |ψ⟩ 1 ≤ a ≤ KA, 1 ≤ b ≤ KB,

1 ≤ i ≤ NA, 1 ≤ j ≤ NB.

Since S in particular models non-communication between parties, the correlation p is non-

signalling, meaning that p(a|i) :=
∑KB

b=1 p(a, b|i, j) and p(b|j) :=
∑KA

a=1 p(a, b|i, j) are well-

defined (the first sum is independent of j and the second sum is independent of i). A

correlation p is called synchronous if KA = KB, NA = NB and p(a, b|i, i) = 0 for all i and

a ̸= b.

Let S and S̃ be (NA, NB)-input (KA, KB)-output strategies. Then S̃ is a local dilation

if S there exist finite-dimensional Hilbert spaces KA,KB, a state |aux⟩ ∈ KA ⊗ KB and

isometries UA : HA → H̃A ⊗KA and UB : HB → H̃B ⊗KB such that

(1) (UA ⊗ UB)(Mi,a ⊗Nj,b) |ψ⟩ = (M̃i,a ⊗ Ñj,b) |ψ̃⟩ ⊗ |aux⟩

for all a, b, i, j. There is a slight abuse of notation in (1); namely, we identify

(H̃A ⊗KA)⊗ (H̃B ⊗KB) ≡ (H̃A ⊗ H̃B)⊗ (KA ⊗KB).

Note that if S̃ is a local dilation of S, then the correlations of S and S̃ coincide. Finally,

we say that a strategy S̃ is self-tested by its correlation if it is a local dilation of any other

strategy with the same correlation.

3. Quadruples of projections adding to a scalar multiple of the identity

In [KRS02], the authors derive several profound results on tuples of projections that add

to a scalar multiple of the identity operator. This is achieved by studying certain functors

between categories of their representations, which are also the cornerstone of this paper.

For our purposes, we focus on projections P1, P2, P3, P4 that add to (2 − 1
n
)I, where n is a

natural number. First we adopt the language of representations of C*-algebras, at least to

the extent required in this paper. Then we review the construction of the aforementioned

functors from [KRS02, Section 1.2]. Finally, we refine a part of [KRS02, Proposition 3] to

obtain further properties about the projections Pi as above (Proposition 3.1).
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For α ∈ R define the universal C*-algebra

Aα = C∗ 〈x1, x2, x3, x4 : xi = x∗i = x2i , x1 + x2 + x3 + x4 = α
〉
,

and let Repα denote the category of representations of Aα. That is, objects of Repα are

representations of Aα on Hilbert spaces, and morphisms of Repα are equivariant maps, i.e.,

bounded linear operators between Hilbert spaces that intertwine the actions of represen-

tations. For a comprehensive source on C*-algebras and their representations, see [Bla06].

While the above terminology offers a suitable mathematical framework for the technical

steps in the proofs of this paper, let us extract the main meaning behind it, sufficient for

comprehending the proofs. Without addressing precisely what a universal C*-algebra is,

we can still say what its representations are. A representation π of Aα is a quadruple of

projections X1, X2, X3, X4 on a Hilbert space H that satisfy X1+X2+X3+X4 = αI. Thus

Repα is foremost a collection of such quadruples; one could think of Aα as their abstract

model. For a π ∈ Repα as above we write π(xi) = Xi, and we assign to it a 6-tuple of

numbers [π] = (α;n; d1, d2, d3, d4) where n = dimH and di = rkπ(xi), the dimension of the

range of Xi (if H is infinite-dimensional, then n = ∞; likewise, di can be infinite).

Note that representations may be related to each other in several ways. For example,

let π ∈ Aα is given by projections X1, . . . , X4 on a Hilbert space H and ρ ∈ Aα is given

by projections Y1, . . . , Y4 on a Hilbert space K. Then the projections X1 ⊕ Y1, . . . , X4 ⊕ Y4
act on H ⊕ K and add to α times identity, so they determine representation of Aα, called

the direct sum of π and ρ. Next, we say that π and ρ are unitarily equivalent if there is a

unitary (that is, an isometric invertible linear map) U : H → K such that Yi = UXiU
∗ for

i = 1, . . . , 4. Finally, we say that π ∈ Repα is irreducible if it is not unitarily equivalent to

a direct sum of representations. Irreducible representations can be viewed as the building

blocks of Repα; namely, every representation is unitarily equivalent to a (possibly infinite)

direct sum of irreducible representations. Without going into technical details, viewing Repα

as a category instead of merely a set encapsulates these relations between representations

(e.g., that some of them are unitarily equivalent, some are direct sums of others, and some

are irreducible).

In this paper, representations of Aα (for certain choices of α) give rise to the projective

measurements in self-tested strategies presented in Section 5. To establish the self-testing

property, it is imperative to have a good handle on Repα (concretely, on the irreducible

representations within). This is straightforward for α = 0 and α = 1. Indeed, the only

quadruples of projections adding to 0 are tuples of zero operators; these are all direct sums of

the trivial representation τ given by τ(xj) = 0 acting on the one-dimensional Hilbert space.

Hence Rep0 contains a unique irreducible representation. On the other hand, quadruples of

projections adding to 1 are necessarily diagonalizable, and thus unitarily equivalent to direct

sums of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) acting on the one-dimensional Hilbert

space. Thus Rep1 contains exactly four unitarily non-equivalent irreducible representations.

For general α, representations of Aα are not yet well-understood; however, the aim of the
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next subsection is to leverage the knowledge of the very simple Rep1 to study Repα for

certain values of α.

3.1. Functors between representation categories. In this subsection we define two

functors T = Tα : Repα → Rep4−α (linear reflection) and S = Sα : Repα → Rep α
α−1

(hyper-

bolic reflection). The subscripts are omitted when clear from the context. Before defining

T and S, let us mention what a reader should imagine under this terminology. A functor

from Repα to Repβ is primarily a mapping, that takes each quadruple of projections adding

to α times identity to a quadruple of projections adding to β times identity. However, being

a functor means that this mapping has to respect the additional structure of the categories

Repα and Repβ; in particular, it needs to preserve direct sums, and map unitarily equivalent

representations to unitarily equivalent representations. Technically, one encapsulates this by

saying that a functor consists of a map between objects of categories and a (well-behaved)

map between morphisms of categories.

(T ): Given a representation π of Aα let T (π) be the representation of A4−α determined

by T (π)(xi) := I − π(xi). Note that T commutes with equivariant maps between rep-

resentations, so it extends to a functor T : Repα → Rep4−α. If [π] = (α;n; di) then

[T (π)] = (4− α;n;n− di).

(S): Suppose α /∈ {0, 1}, and let π be a representation of Aα on H. Denote Ĥ =⊕
i ran π(xi). Let wi : ranπ(xi) → Ĥ be the canonical injections, and let ui : ranπ(xi) → H

be inclusions. Then

u =
1√
α

u
∗
1
...

u∗4

 : H → Ĥ

is an isometry by definition of the algebra Aα. Let K = ran(I − uu∗), with inclusion

v : K → Ĥ. Note that dimK = dim Ĥ − dimH. Define

S(π)(xi) :=
α

α− 1
v∗wiw

∗
i v.

Then

(S(π)(xi))
2 =

α2

(α− 1)2
v∗wiw

∗
i vv

∗wiw
∗
i v =

α2

(α− 1)2
v∗wiw

∗
i (I − uu∗)wiw

∗
i v

=
α2

(α− 1)2
v∗wi

(
I − 1

α
u∗iui

)
w∗

i v =
α2

(α− 1)2

(
1− 1

α

)
v∗wiw

∗
i v

= S(π)(xi)

and
4∑

i=1

S(π)(xi) =
4∑

i=1

α

α− 1
v∗wiw

∗
i v =

α

α− 1
v∗

(
4∑

i=1

wiw
∗
i

)
v =

α

α− 1
v∗v =

α

α− 1
I.

Therefore S(π)(x1), . . . , S(π)(x4) are projections that give rise to a representation S(π) of

A α
α−1

on K. As described in [KRS02, Section 1.2], one can also extend S to equivariant maps,
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resulting in a functor S : Repα → Rep α
α−1

. If [π] = (α;n; di) then [S(π)] = ( α
α−1

;
∑

i di −
n; di).

3.2. Distinguished quadruples of projections. For α ∈ (0, 3), the (Coxeter) functor

Φ+ = S ◦ T = S4−α ◦ Tα : Repα → Rep1+ 1
3−α

define an equivalence of categories (with inverse T ◦S) by [KRS02, Theorem 2]. In particular,

Φ+ is a bijection between representations of Aα and A1+ 1
3−α

, which maps irreducible ones

to irreducible ones. If [π] = (α, n, d1, . . . , d4) then [Φ+(π)] = (1 + 1
3−α

; 3n −
∑

i di;n − di).

The functor Φ+ plays an implicit yet crucial role in [KRS02, Proposition 3] that describes

the category Rep2− 1
n
. For the sake of completeness, we provide the proof of the part of

[KRS02, Proposition 3], and refine it to extract the additional information needed in this

paper. Given a real number β let ⌊β⌋ denote the largest integer that is not larger than β.

The main statement of this section shows that starting with the easily-understood Rep1

and then repeatedly applying the functor Φ+, one obtains a good grasp on Rep2− 1
n
for every

n ∈ N.

Proposition 3.1 ([KRS02, Proposition 3(c)]). Let n ∈ N. The C*-algebra A2− 1
n
has pre-

cisely four unitarily non-equivalent irreducible representations.

More concretely, there are projections P
(n)
1 , . . . ,P

(n)
4 ∈ Mn(R) with rkP

(n)
1 = ⌊n

2
⌋ − (−1)n

and rkP
(n)
i = ⌊n

2
⌋ for i = 2, 3, 4, such that given an irreducible representation of A2− 1

n
, the

quadruple (π(x1), . . . , π(x4)) is unitarily equivalent to one of the

(P
(n)
1 ,P

(n)
2 ,P

(n)
3 ,P

(n)
4 ), (P

(n)
4 ,P

(n)
1 ,P

(n)
2 ,P

(n)
3 ),

(P
(n)
3 ,P

(n)
4 ,P

(n)
1 ,P

(n)
2 ), (P

(n)
2 ,P

(n)
3 ,P

(n)
4 ,P

(n)
1 ).

Proof. We prove the statement by induction on n. If n = 1, then P
(1)
1 = 1 and P

(1)
i = 0

for i = 2, 3, 4 are the desired 1 × 1 projections, giving rise to a representation A1 →
C. Now suppose projections P

(n)
i ∈ Mn(R) possess the desired properties. Then they

define an irreducible representation of A2− 1
n
given by π(xi) = P

(n)
i , and the other three

irreducible representations up to unitary equivalence are obtained by cyclically permuting

the generators. Now let P
(n+1)
i := Φ+(π)(xi). Since Φ+ : Rep2− 1

n
→ Rep2− 1

n+1
is an

equivalence of categories, Φ+(π) is an irreducible representation ofA2− 1
n
, and the other three

irreducible representations up unitary equivalence are obtained via cyclic permutations of

generators. The rank values are determined by comparing [π] and [Φ+(π)]. □

Projections P
(n)
i are central to the self-testing results in this paper. The intuition behind

their applicability to self-tests is the following: if we momentarily forget irreducibility, they

are characterized by having certain traces and satisfying a linear equation. In a quantum

strategy with a maximally entangled state and projective measurements, traces and linear

relations among the PVMs are encoded by the correlation. This makes strategies with

maximally entangled states and measurements (P
(n)
i , I −P

(n)
i ) very natural candidates for

the self-testing phenomenon.
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Remark 3.2. Proposition 3.1 does not provide a closed-form expression for projections

P
(n)
1 , . . . ,P

(n)
4 ∈ Mn(R) as functions of n. Nevertheless, definitions of functors T and S give

rise to a recursive procedure for constructing P
(n)
i ∈ Mn(R) from P

(n−1)
i ∈ Mn−1(R). This

procedure requires only matrix arithmetic and Gram-Schmidt orthogonalization.

Basis of recursion n = 1: set P
(1)
1 := 1 and P

(1)
i := 0 for i = 2, 3, 4.

Recursive step n→ n+ 1: given P
(n)
1 , . . . ,P

(n)
4 let

• Ui be an n × rk(n −P
(n)
i ) matrix whose columns form an orthonormal basis of the

column space of I −P
(n)
i ;

• Vi be an (rkP
(n)
i )× (n+ 1) matrix such that the columns ofV1...

V4


form an orthonormal basis of the column space of

I − 1

2 + 1
n

U
∗
1
...

U∗
4

(U1 · · · U4

)
.

Then set P
(n+1)
i := (2− 1

n+1
)V ∗

i Vi.

Using the above procedure, we obtain the following projections for n = 1, 2, 3:

P
(1)
1 = (1), P

(1)
2 = (0), P

(1)
3 = (0), P

(1)
4 = (0)

P
(2)
1 =

(
0 0

0 0

)
, P

(2)
2 =

(
1 0

0 0

)
, P

(2)
3 =

(
1
4

−
√
3

4
−
√
3

4
3
4

)
, P

(2)
4 =

(
1
4

√
3
4√

3
4

3
4

)

P
(3)
1 =

1 0 0

0 1 0

0 0 0

 , P
(3)
2 =

0 0 0

0 4
9

−2
√
5

9

0 −2
√
5

9
5
9

 ,

P
(3)
3 =


1
3

1
3
√
3

√
5

3
√
3

1
3
√
3

1
9

√
5
9√

5
3
√
3

√
5
9

5
9

 , P
(3)
4 =


1
3

−1
3
√
3

−
√
5

3
√
3

−1
3
√
3

1
9

√
5
9

−
√
5

3
√
3

√
5
9

5
9


The linear-algebraic nature of this procedure allows for a feasible implementation using

exact arithmetic. For concrete matrices in cases n = 4, 5, 6, see Appendix A.

For later use we record a technical fact.

Lemma 3.3. The 4× 4 matrix
rkP

(n)
1 rkP

(n)
2 rkP

(n)
3 rkP

(n)
4

rkP
(n)
4 rkP

(n)
1 rkP

(n)
2 rkP

(n)
3

rkP
(n)
3 rkP

(n)
4 rkP

(n)
1 rkP

(n)
2

rkP
(n)
2 rkP

(n)
3 rkP

(n)
4 rkP

(n)
1

 = −(−1)nI4 +
⌊n
2

⌋
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
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is invertible for every n ∈ N.

Remark 3.4. Let us determine the normalized traces of P
(n)
i and their products; these

values will appear in the self-testing correlations of this paper. Clearly,

τ
(
P

(n)
1

)
=

1

2
− 1 + 3(−1)n

4n
, τ

(
P

(n)
i

)
=

1

2
− 1− (−1)n

4n
, for i = 2, 3, 4.

Next, by Proposition 3.1, for every permutation σ of {2, 3, 4} there exists a unitary U ∈
Mn(C) such that

UP
(n)
1 U∗ = P

(n)
1 , UP

(n)
i U∗ = P

(n)
σ(i), for i = 2, 3, 4.

Therefore τ(P
(n)
1 P

(n)
i ) is independent of i ∈ {2, 3, 4}, and τ(P

(n)
i P

(n)
j ) is independent of

i, j ∈ {2, 3, 4} with i ̸= j. From the equation
∑4

j=1P
(n)
i P

(n)
j = (2− 1

n
)P

(n)
i for i = 1, . . . , 4

we then obtain

τ
(
P

(n)
1 P

(n)
i

)
=

1

3

(
1− 1

n

)
τ
(
P

(n)
1

)
for i = 2, 3, 4,

τ
(
P

(n)
i P

(n)
j

)
=

1

2

(
1− 1

n

)(
τ
(
P

(n)
i

)
− 1

3
τ
(
P

(n)
1

))
for i, j = 2, 3, 4 and i ̸= j.

4. Spectral results

Let n ∈ N. The projections P
(n)
1 , . . . ,P

(n)
4 of Proposition 3.1 play a central role in

self-tests of Section 5 below. Namely, they appear as projective measurements in a self-

tested strategy in Subsection 5.1; the fact that they are determined by a linear relation

P
(n)
1 +· · ·+P

(n)
4 = (2− 1

n
)I is beneficial for deducing the measurements from the correlation.

Nevertheless, to obtain a self-test, one still needs to be able to deduce the quantum state

from the correlation. Furthermore, in Subsection 5.2, the presented strategies contain an

additional projective measurement, which, while related to the P
(n)
i , is itself not a part of

quadruple adding to a scalar multiple of identity. To help with the identification of the

quantum state and the additional measurements from the correlation, we first require some

information on eigenvalues and eigenvectors of certain tensor combinations and sums of

pairs of the matrices P
(n)
i . Concretely, Proposition 4.2 shows how the maximally entangled

state is related to P
(n)
1 , . . . ,P

(n)
4 , and Proposition 4.4 shows that P

(n)
3 +P

(n)
4 has pairwise

distinct eigenvalues, which enables post-hoc self-testing techniques [ŠB20, CMV23].

4.1. Role of the maximally entangled state. First, we identify the largest eigenvalue of∑
i P

(n)
i ⊗P

(n)
i and the corresponding eigenvector (cf. [MPS21, Lemma 5.7]), and bound the

spectrum of
∑

i P
(n)
i ⊗P

(n)
σ(i) for a nontrivial cyclic permutation σ of (1, 2, 3, 4). Given |ψ⟩ =∑

i,j αij |i⟩|j⟩ ∈ Cn ⊗ Cn let mat(|ψ⟩) =
∑

i,j αij |i⟩⟨j| ∈ Mn(C) denote its matricization;

note that mat(|ϕn⟩) = 1√
n
I, and

mat
(
A⊗B |ψ⟩

)
= Amat(|ψ⟩)Bt

for A,B ∈ Mn(C).
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Lemma 4.1. Let n ∈ N and let σ be a cyclic permutation σ of (1, 2, 3, 4). Denote M =
n

2n−1

∑4
i=1P

(n)
i ⊗P

(n)
σ(i).

(i) If σ = id, then the largest eigenvalue of M is 1, with the eigenspace C |ϕn⟩.
(ii) If σ ̸= id, then all eigenvalues of M are strictly smaller than 1.

Proof. Let |ψ⟩ ∈ Cn ⊗ Cn be an arbitrary state. Then

⟨ψ| I ⊗ I −M |ψ⟩ ≥ ⟨ψ| I ⊗ I − n

2n− 1

4∑
i=1

P
(n)
i ⊗ I |ψ⟩

= ⟨ψ|

(
I − n

2n− 1

4∑
i=1

P
(n)
i

)
⊗ I |ψ⟩ = 0.

(2)

Therefore the largest eigenvalue of M is at most 1. Since

⟨ϕn| I ⊗ I − n

2n− 1

4∑
i=1

P
(n)
i ⊗P

(n)
i |ϕn⟩ = τ

(
I − n

2n− 1

4∑
i=1

P
(n)
i

)
= 0,

|ϕn⟩ is an eigenvector of M for eigenvalue 1 if σ = id. Suppose |ψ⟩ ∈ Cn ⊗ Cn satisfies

M |ψ⟩ = |ψ⟩. Then (2) gives

⟨ψ|M |ψ⟩ = ⟨ψ| n

2n− 1

4∑
i=1

P
(n)
i ⊗ I |ψ⟩

and therefore

⟨ψ|
4∑

i=1

P
(n)
i ⊗ (I −P

(n)
σ(i)) |ψ⟩ = 0.

Positive semidefinitness then implies P
(n)
i ⊗(I−P

(n)
σ(i)) |ψ⟩ = 0, and analogously (I−P

(n)
i )⊗

P
(n)
σ(i) |ψ⟩ = 0. In particular, P

(n)
i ⊗ I |ψ⟩ = I ⊗P

(n)
σ(i) |ψ⟩ for i = 1, . . . , 4. Therefore

(3) P
(n)
i mat(|ψ⟩) = mat(|ψ⟩)P(n)

σ(i) for i = 1, . . . , 4.

Note that P
(n)
1 , . . . ,P

(n)
4 and P

(n)
σ(1), . . . ,P

(n)
σ(4) give rise to two irreducible representations of

A2− 1
n
by Proposition 3.1, which are unitarily equivalent if and only if σ = id. Since mat(|ψ⟩)

intertwines these two irreducible representations, Schur’s lemma implies that mat |ψ⟩ = γI

for some γ ∈ C if σ = id, and mat |ψ⟩ = 0 if if σ ̸= id. Therefore |ψ⟩ is a scalar multiple of

|ϕn⟩ if σ = id, and 1 is not an eigenvalue of M if σ ̸= id. □

The following proposition shows how the maximally entangled state |ϕn⟩ is intrinsically
connected to representations of A2− 1

n
.

Proposition 4.2. Let n ∈ N, let a1, . . . , a4, b1, . . . , b4 be nonnegative integers with a1 +

· · · + a4 = b1 + · · · + b4, and let σ1, . . . , σ4 be the distinct cyclic permutations of (1, 2, 3, 4).

Consider the identification

C(a1+···+a4)n ⊗ C(b1+···+b4)n ≡

(
4⊕

j,k=1

Caj ⊗ Cbk

)
⊗ (Cn ⊗ Cn).
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Then the largest eigenvalue of

n

2n− 1

4∑
i=1

(
4⊕

j=1

Iaj ⊗P
(n)
σj(i)

)
⊗

(
4⊕

j=1

Ibj ⊗P
(n)
σj(i)

)

is 1, with the eigenspace{(
|aux1⟩ ⊕ |aux2⟩ ⊕ |aux3⟩ ⊕ |aux4⟩

)
⊗ |ϕn⟩ : |auxj⟩ ∈ Caj ⊗ Cbj

}
.

Proof. Follows from the distributivity of tensor product over direct sum, and Lemma 4.1. □

4.2. Spectrum of the sum of two distinguished projections. Next, we analyze the

spectrum of the matrix P
(n)
3 + P

(n)
4 for every n. To do this, we return to the functors

between categories Repα. Given a finite-dimensional representation π of Aα, let Λπ ⊂ [0, 2]

denote the set of eigenvalues of π(x3 + x4).

Lemma 4.3. Let π be an n-dimensional representation of Aα.

(i) ΛT (π) = 2− Λπ.

(ii) Let α /∈ {0, 1}.
(ii.a) If rk π(x1) + rk π(x2) > n = rkπ(x3) + rk π(x4) then

ΛS(π) = {0} ∪
(

α
α−1

− 1
α−1

Λπ

)
.

(ii.b) If rk π(x3) + rk π(x4) > n = rkπ(x1) + rk π(x2) then

ΛS(π) =
{

α
α−1

}
∪
(

α
α−1

− 1
α−1

Λπ

)
.

(iii) Let α ∈ (0, 3).

(iii.a) If rk π(x1) + rk π(x2) < n = rkπ(x3) + rk π(x4) then

ΛΦ+(π) = {0} ∪
(
1− 1

3−α
+ 1

3−α
Λπ

)
.

(iii.b) If rk π(x3) + rk π(x4) < n = rkπ(x1) + rk π(x2) then

ΛΦ+(π) =
{
1 + 1

3−α

}
∪
(
1− 1

3−α
+ 1

3−α
Λπ

)
.

Proof. Equation (i) follows immediately from T (π)(xi) = I − π(xi). Equations (iii) are

consequences of (i) and (ii) because Φ+ = S ◦ T .
Equations (ii): Suppose π act on H with dimH = n, and let

ui : ranπ(xi) → H,
wi : ranπ(xi) → ranπ(x1)⊕ · · · ⊕ ranπ(x4),

v =

( v1
...
v4

)
: ran

(
I − 1

α

(
u∗
1

...
u∗
4

)
( u1 ··· u4 )

)
→ ran π(x1)⊕ · · · ⊕ ranπ(x4)
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be inclusions as in the construction of S. Then S(π)(xi) =
α

α−1
v∗wiw

∗
i v, and the character-

istic polynomial of S(π)(x3 + x4) equals

det
(
λI − S(π)(x3 + x4)

)
= det

(
λI − α

α−1
v∗(w3w

∗
3 + w4w

∗
4)v
)

= det
(
λI − α

α−1
( v∗3 v∗4 ) (

v3
v4 )
)

= λrkπ(x1)+rkπ(x2)−n det
(
λI − α

α−1
( v3
v4 ) ( v∗3 v∗4 )

)
= λrkπ(x1)+rkπ(x2)−n det

(
λI − α

α−1

(
I − 1

α

(
u∗
3

u∗
4

)
( u3 u4 )

))
= λrkπ(x1)+rkπ(x2)−n det

((
λ− α

α−1

)
I + 1

α−1

(
u∗
3

u∗
4

)
( u3 u4 )

)
= λrkπ(x1)+rkπ(x2)−n

(
λ− α

α−1

)rkπ(x3)+rkπ(x4)−n
det
((
λ− α

α−1

)
I + 1

α−1
( u3 u4 )

(
u∗
3

u∗
4

))
= λrkπ(x1)+rkπ(x2)−n

(
λ− α

α−1

)rkπ(x3)+rkπ(x4)−n
det
((
λ− α

α−1

)
I + 1

α−1
π(x3 + x4)

)
.

Therefore

ΛS(π) = {0} ∪
(

α
α−1

− 1
α−1

Λπ

)
if rk π(x1) + rk π(x2) > n = rkπ(x3) + rk π(x4), and

ΛS(π) =
{

α
α−1

}
∪
(

α
α−1

− 1
α−1

Λπ

)
if rk π(x3) + rk π(x4) > n = rkπ(x1) + rk π(x2). □

The following proposition identifies all eigenvalues of the matrix P
(n)
3 +P

(n)
4 ; in particular,

they are all simple (pairwise distinct).

Proposition 4.4. Eigenvalues of n(P
(n)
3 + P

(n)
4 ) are {0, 2, . . . , 2n − 2} if n is odd, and

{1, 3, . . . , 2n− 1} if n is even.

Proof. Let π1 : A1 → C be given as π1(x1) = 1 and π1(x2) = π(x3) = π(x4) = 0. For

n ≥ 2 denote πn = Φ+(π1). By Proposition 3.1 we have rkπn(x1) + rk πn(x2) < n =

rk πn(x3) + rk πn(x4) if n is even, and rk πn(x3) + rk πn(x4) < n = rkπn(x1) + rk πn(x2) if n

is odd. By Lemma 4.3,

Λπn+1 = {0} ∪
(

1
n+1

+ n
n+1

Λπn

)
if n is even,

Λπn+1 = {2− 1
n+1

} ∪
(

1
n+1

+ n
n+1

Λπn

)
if n is odd.

Therefore

(n+ 1)Λπn+1 = {0} ∪ (1 + nΛπn) if n is even,

(n+ 1)Λπn+1 = {2n+ 1} ∪ (1 + nΛπn) if n is odd.

Since Λπ1 = {0}, induction on n shows that

nΛπn = {0, 2, . . . , 2n− 2} if n is odd,

nΛπn = {1, 3, . . . , 2n− 1} if n is even.
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Finally, P
(n)
3 ,P

(n)
4 are simultaneously unitarily equivalent to πn(x3), πn(x4). □

Lastly, we determine how eigenvectors of P
(n)
3 +P

(n)
4 interact with P

(n)
1 and P

(n)
2 .

Proposition 4.5. Let λ be an eigenvalue of P
(n)
3 +P

(n)
4 , with a corresponding unit eigen-

vector |e⟩ ∈ Rn.

(i) If λ ̸= 1− 1
n
then

⟨e|P(n)
1 |e⟩ = ⟨e|P(n)

2 |e⟩ = 1− 1

2n
− λ

2
.

(ii) If λ = 1− 1
n
then

⟨e|P(n)
1 |e⟩ =

{
0 if n even,

1 if n odd,
⟨e|P(n)

2 |e⟩ =

{
1 if n even,

0 if n odd.

Proof. (i) By the defining relation of P
(n)
i ,

(4) P
(n)
1 |e⟩+P

(n)
2 |e⟩+ λ |e⟩ =

(
2− 1

n

)
|e⟩ .

Multiplying (4) on the left with ⟨e|P(n)
i for i = 1, 2 results in

⟨e|P(n)
1 |e⟩+ ⟨e|P(n)

1 P
(n)
2 |e⟩ =

(
2− 1

n
− λ

)
⟨e|P(n)

1 |e⟩ ,

⟨e|P(n)
2 P

(n)
1 |e⟩+ |e⟩P(n)

2 |e⟩ =
(
2− 1

n
− λ

)
⟨e|P(n)

2 |e⟩ .

Therefore ⟨e|P(n)
1 |e⟩ = ⟨e|P(n)

2 |e⟩ if λ ̸= 1 − 1
n
. Multiplying (4) on the left with ⟨e| then

gives ⟨e|P(n)
1 |e⟩ = ⟨e|P(n)

2 |e⟩ = 1− 1
2n

− λ
2
.

(ii) Note that P
(n)
3 + P

(n)
4 admits n orthonormal eigenvectors |e1⟩ , . . . , |en⟩ ∈ Rn by

Proposition 4.4. Hence

trP
(n)
i =

n∑
k=1

⟨ek|P(n)
i |ek⟩

for i = 1, 2. By (ii) and Proposition 3.1 we therefore have

⟨e|P(n)
i |e⟩ = trP

(n)
i − (n− 1)

(
1− 1

2n

)
+

1

2

(
tr
(
P

(n)
3 +P

(n)
4

)
− 1 +

1

n

)
= 2

⌊n
2

⌋
− n+ 1−

{
(−1)n if i = 1

0 if i = 2

since trP
(n)
i = rkP

(n)
i . □

5. Constant-sized self-tests

In this section we derive the main results of the paper: every maximally entangled state

is self-tested by a 4-input 2-output strategy (Subsection 5.1), and every single binary PVM

is self-tested by a 5-input 2-output strategy (Subsection 5.2).
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5.1. Self-testing maximally entangled states. First we introduce a family of 4-input

2-output strategies that self-test maximally entangled states of all dimensions (Theorem

5.2).

Definition 5.1. For n ∈ N let P
(n)
i be the n× n projections as in Proposition 3.1. Let Sn

be the 4-input 2-output bipartite strategy

Sn =

(
|ϕn⟩ ;

(
P

(n)
i , I −P

(n)
i

)4
i=1

;
(
P

(n)
i , I −P

(n)
i

)4
i=1

)
.

Note that the correlation of Sn is synchronous, i.e., p(a, b|i, i) = τ
(
P

(n)
i (I −P

(n)
i )
)
= 0

for a ̸= b. Furthermore,

p(1, 1|i, j) = ⟨ϕn|P(n)
i ⊗P

(n)
j |ϕn⟩ = τ

(
P

(n)
i P

(n)
j

)
,

p(1|i) = ⟨ϕn|P(n)
i ⊗ I |ϕn⟩ = ⟨ϕn| I ⊗P

(n)
i |ϕn⟩ = τ

(
P

(n)
i

)
for i, j = 1, . . . , 4, and these values are computed in Remark 3.4. Comprising everything

together, the correlation of Sn is determined by the vector(
p(1|i)

)4
i=1

=
(

⌊n
2
⌋−(−1)n

n

⌊n
2
⌋

n

⌊n
2
⌋

n

⌊n
2
⌋

n

)
and the symmetric matrix

(
p(1, 1|i, j)

)4
i,j=1

=



⌊n
2
⌋−(−1)n

n

(n−1)(⌊n
2
⌋−(−1)n)

3n2

(n−1)(⌊n
2
⌋−(−1)n)

3n2

(n−1)(⌊n
2
⌋−(−1)n)

3n2

· ⌊n
2
⌋

n
(n−1)(2n−1+3(−1)n)

12n2

(n−1)(2n−1+3(−1)n)
12n2

· · ⌊n
2
⌋

n
(n−1)(2n−1+3(−1)n)

12n2

· · · ⌊n
2
⌋

n

 .

Notice that while a closed-form expression for the strategy Sn has not been given (instead,

the projections in Sn can be recursively constructed as in Remark 3.2), its correlation admits

a closed-form expression (as a function of n).

The next theorem establishes that Sn is a local dilation of any strategy S that produces

the same correlation as Sn. The blueprint for the proof is threefold. Firstly, the correla-

tion manages to encode the defining linear relation of measurements in Sn, which leads to

measurements of S essentially forming a representation of A2− 1
n
. Secondly, the established

relationship between the maximally entangled state and representations of A2− 1
n
(Proposi-

tion 4.2) allows one to identify the state in S. Thirdly, the finer look at the correlation shows

that the representation of A2− 1
n
arising from measurements of S cannot be an direct sum

of the different irreducible representations, but is actually a direct copy of the irreducible

representation coming from Sn.

Theorem 5.2. The strategy Sn is self-tested by its correlation for every n ∈ N.
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Proof. Let p be the correlation of Sn. Suppose

S =
(
|ψ⟩ ; (Pi, I − Pi)

4
i=1; (Qi, I −Qi)

4
i=1

)
is another strategy with the correlation p. Since p is synchronous and local dilations are

transitive, by [MPS21, Lemma 4.9 and Corollary 3.6] it suffices to assume that the state

|ψ⟩ ∈ H ⊗H has full Schmidt rank, Pi, Qi are projections on H, and

(5) Pi ⊗ I |ψ⟩ = I ⊗Qi |ψ⟩

for i = 1, . . . , 4. By equality of correlations and (5),

⟨ψ|

(
2n− 1

n
I −

4∑
i=1

Pi

)2

⊗ I |ψ⟩

= ⟨ψ|

(
2n− 1

n
I −

4∑
i=1

Pi

)
⊗

(
2n− 1

n
I −

4∑
i=1

Qi

)
|ψ⟩

= ⟨ϕn|

(
2n− 1

n
I −

4∑
i=1

P
(n)
i

)
⊗

(
2n− 1

n
I −

4∑
i=1

P
(n)
i

)
|ϕn⟩ = 0,

and analogously for Qi. Since |ψ⟩ has full rank, we obtain

(6)
2n− 1

n
I −

4∑
i=1

Pi = 0 =
2n− 1

n
I −

4∑
i=1

Qi.

Furthermore,

(7) ⟨ψ| n

2n− 1

4∑
i=1

Pi ⊗Qi |ψ⟩ = ⟨ϕn|
n

2n− 1

4∑
i=1

P
(n)
i ⊗P

(n)
i |ϕn⟩ = 1.

Let σ1, . . . , σ4 be the distinct cyclic permutations of (1, 2, 3, 4), with σ1 = id. By (6) and

Proposition 3.1 there exist nonnegative integers a1, . . . , a4, b1, . . . , b4 with a1 + · · · + a4 =

b1 + · · ·+ b4, and unitaries U and V on H, such that

UPiU
∗ =

4⊕
j=1

Iaj ⊗P
(n)
σj(i)

, V QiV
∗ =

4⊕
j=1

Ibj ⊗P
(n)
σj(i)

for i = 1, . . . , 4. By (7) and Proposition 4.2,

U ⊗ V |ψ⟩ =
(
|aux1⟩ ⊕ |aux2⟩ ⊕ |aux3⟩ ⊕ |aux4⟩

)
⊗ |ϕn⟩

for some |auxj⟩ ∈ Caj ⊗ Cbj , where we identified

H⊗H ≡

(
4⊕

j,k=1

Caj ⊗ Cbk

)
⊗ (Cn ⊗ Cn).

Then

⟨ϕn|P(n)
i ⊗ I |ϕn⟩ = ⟨ψ|Pi ⊗ I |ψ⟩ =

4∑
j=1

⟨auxj|auxj⟩ ⟨ϕn|P(n)
σj(i)

⊗ I |ϕn⟩
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gives rise to a linear system of equations in ⟨auxj|auxj⟩,

(8) rkP
(n)
i =

4∑
j=1

rkP
(n)
σj(i)

· ⟨auxj|auxj⟩ for i = 1, 2, 3, 4.

By Lemma 3.3, the system (8) has a unique solution; since σ1 = id, we obtain ⟨aux1|aux1⟩ =
1 and ⟨auxj|auxj⟩ = 0 for j = 2, 3, 4. Since |ψ⟩ is a faithful state, it follows that aj = bj = 0

for j = 2, 3, 4, and a1 = b1. Therefore

UPiU
∗ = Ia1 ⊗P

(n)
i , V QiV

∗ = Ia1 ⊗P
(n)
i , U ⊗ V |ψ⟩ = |aux1⟩ ⊗ |ϕn⟩ ,

so Sn is a local dilation of S. □

Remark 5.3. The proof of Theorem 5.2 follows the core ideas of the proof of [MPS21,

Corollary 7.1], which treats maximally entangled states of odd dimension. The main differ-

ence arises from applying the representation theory of C*-algebras Aα for different values

of α. Namely, in [MPS21] the authors focus on A2− 2
n
for odd n (and their analogs on more

than four generators), since A2− 2
n
for odd n is simple and isomorphic to Mn(C) (i.e., it has

a unique irreducible representation, which is n-dimensional). On the other hand, algebras

A2− 1
n
for n ∈ N are not simple, as they are isomorphic to C4 ⊗ Mn(C). Non-simplicity is

the origin of intricacies in the proof of Theorem 5.2 and auxiliary results.

Finally, with a considerable effort, the authors of [MPS21] also establish that their self-

tests are robust. Such robustness analysis is omitted in this paper; nevertheless, there is no

obstruction for the techniques of [MPS21, Section 6] to imply robust versions of the newly

presented self-tests.

Corollary 5.4. The following states and binary projective measurements can be self-tested

by 4-input 2-output bipartite strategies for every n ∈ N:
(a) maximally entangled state of local dimension n;

(b) binary projective measurement determined by an n× n projection with rank in{⌈n
2

⌉
,
⌊n
2

⌋
− (−1)n,

⌈n
2

⌉
+ (−1)n

}
.

5.2. Self-testing local projective measurements. Next we introduce a two-parametric

family of 5-input 2-output strategies that self-test binary PVMs of all dimensions and ranks

(Theorem 5.10). These strategies are obtained from the 4-input 2-output strategies of

Subsection 5.1 by adding an additional binary PVM. The phenomenon, where a self-tested

strategy is extended to a new one while preserving the self-testing feature, is called post-hoc

self-testing [ŠB20]. The key sufficiency condition for post-hoc self-testing was derived in

[CMV23], and is presented next.

Given an invertible hermitian matrix X ∈ Mn(C) let sgn(X) ∈ Mn(C) be the unique

hermitian unitary matrix that commutes with X, and sgn(X)X ≻ 0. Equivalently, sgn(X)

is the unitary part of the polar decomposition of X. In other words, sgn is the matrix

extension of the usual sign function via functional calculus. This map plays a role in the

following post-hoc self-testing criterion established in [CMV23].
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Proposition 5.5. [CMV23, Proposition 3.7] Suppose P, Pi, Qj ∈ Mn(R) for i = 1, . . . , NA

and j = 1, . . . , NB are projections, and the (NA, NB)-input (2, 2)-output strategy(
|ϕn⟩ ; (Pi, I − Pi)

NA

i=1 ; (Qi, I −Qi)
NB

i=1

)
is self-tested by its correlation. If

2P − I ∈ sgn
(
GLn(R) ∩ spanR{I,Q1, . . . , QNB

}
)
,

then the (NA + 1, NB)-input (2, 2)-output strategy(
|ϕn⟩ ; (Pi, I − Pi)

NA

i=1 , (P, I − P ); (Qi, I −Qi)
NB

i=1

)
is self-tested by its correlation.

As mentioned at the beginning of the subsection, Proposition 5.5 will be used to obtain

a self-tested strategy by extending Sn from Subsection 5.1. Recall that P
(n)
3 + P

(n)
4 has

pairwise distinct eigenvalues by Proposition 4.4. This gives rise to a family of projections

that satisfy the sufficiency condition in Proposition 5.5.

Proposition 5.6. Let n, r ∈ N with r ≤ n. The matrix

Q(n,r) :=
1

2

(
I + sgn

(
(2r − 1

2
)I − n

(
P

(n)
3 +P

(n)
4

)))
∈ Mn(R)

is a projection of rank r, and satisfies

2Q(n,r) − I ∈ sgn
(
GLn(R) ∩ spanR{I,P

(n)
3 ,P

(n)
4 }
)
.

Proof. The matrix Q(n,r) is a projection by definition of the map sgn. By Proposition 4.4,

the matrix n(P
(n)
3 +P

(n)
4 ) has eigenvalues {0, 2, . . . , 2n−2} if n is odd and {1, 3, . . . , 2n−1}

if n is even. Therefore (2r − 1
2
)I − n(P

(n)
3 + P

(n)
4 ) has r positive eigenvalues and n − r

negative eigenvalues. Consequently, the multiplicities of eigenvalues 1 and −1 of sgn((2r −
1
2
)I − n(P

(n)
3 +P

(n)
4 )) are r and n− r, respectively. Hence the rank of Q(n,r) is r. □

Remark 5.7. For r ≤ n let |e1⟩ , . . . , |er⟩ ∈ Rn be unit eigenvectors of P
(n)
3 + P

(n)
4 cor-

responding to the smallest r eigenvalues in increasing order (note that |ei⟩ are uniquely

determined up to a sign because P
(n)
3 +P

(n)
4 has n distinct eigenvalues). Then

Q(n,r) = |e1⟩⟨e1|+ · · ·+ |er⟩⟨er| .

For concrete matrix representations of Q(n,r) when 1 ≤ r < n ≤ 6, see Appendix A. While

this is arguably a simpler and computationally more available definition of Q(n,r) than the

original in Proposition 5.6, the presentation in terms of the sgn map is critical in establishing

the self-test of Theorem 5.10 below.

Remark 5.8. Let us determine the normalized traces of P
(n)
i Q(n,r) for r < n

2
. Clearly,

τ
(
Q(n,r)

)
= r

n
. By Proposition 3.1 there exists a unitary U ∈ Mn(C) such that UP

(n)
3 U∗ =
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P
(n)
4 and UP

(n)
4 U∗ = P

(n)
3 , and therefore in particular tr

(
P

(n)
3 Q(n,r)

)
= tr

(
P

(n)
4 Q(n,r)

)
.

Thus

τ
(
P

(n)
i Q(n,r)

)
=

1

2
τ
(
Q(n,r)

(
P

(n)
3 +P

(n)
4

)
Q(n,r)

)
=

r

2n2

(
r − 1− (−1)n

2

)
for i = 3, 4 by Proposition 4.4, since tr(Q(n,r)(P

(n)
3 + P

(n)
4 )Q(n,r)) is the sum of smallest r

eigenvalues of P
(n)
3 + P

(n)
4 by Remark 5.7. Since r < n

2
, Proposition 4.5 and Remark 5.7

imply tr(Q(n,r)P
(n)
1 Q(n,r)) = tr(Q(n,r)P

(n)
2 Q(n,r)). By the defining relation of P

(n)
i we then

obtain

τ
(
P

(n)
i Q(n,r)

)
=

1

2

((
2− 1

n

)
τ
(
Q(n,r)

)
− τ

(
P

(n)
3 Q(n,r)

)
− τ

(
P

(n)
4 Q(n,r)

))
for i = 1, 2.

Definition 5.9. Given n, r ∈ N with r < n, let P
(n)
i be as in Proposition 3.1, and let Q(n,r)

be as in Proposition 5.6. Let Sn,r be the (5, 4)-input (2, 2)-output bipartite strategy(
|ϕn⟩ ;

(
P

(n)
i , I −P

(n)
i

)4
i=1

, (Q(n,r), I −Q(n,r));
(
P

(n)
i , I −P

(n)
i

)4
i=1

)
.

Since Sn,r is an extension of Sn, its correlation is determined by that of Sn and

p(1|5) = ⟨ϕn|Q(n,r) ⊗ I |ϕn⟩ = τ
(
Q(n,r)

)
,

p(1, 1|i, 5) = ⟨ϕn|Q(n,r) ⊗P
(n)
j |ϕn⟩ = τ

(
P

(n)
i Q(n,r)

)
for i = 1, . . . , 4, which are computed in Remark 5.8.

Let n, r ∈ N with r < n. If r = n
2
, then a binary projective measurement of dimension

n and rank r is up to a unitary basis change contained in the self-tested strategy Sn.

Otherwise, a binary projective measurement of dimension n and rank r is contained, up to

a unitary basis change and a reordering of outputs, in Sn,r or Sn,n−r. For this reason, let

us explicitly determine the correlation of Sn,r only for r < n
2
. Since Sn,r is an extension of

Sn (whose correlation is given in Subsection 5.1) and Remark 5.8 computes the additional

inner products (for r < n
2
), the correlation of Sn,r is determined by the vector(
p(1|j)

)5
j=1

=
(

⌊n
2
⌋−(−1)n

n

⌊n
2
⌋

n

⌊n
2
⌋

n

⌊n
2
⌋

n
r
n

)
and the 5× 4 matrix

(
p(1, 1|i, j)

)
i,j

=



⌊n
2
⌋−(−1)n

n

(n−1)(⌊n
2
⌋−(−1)n)

3n2

(n−1)(⌊n
2
⌋−(−1)n)

3n2

(n−1)(⌊n
2
⌋−(−1)n)

3n2

· ⌊n
2
⌋

n
(n−1)(2n−1+3(−1)n)

12n2

(n−1)(2n−1+3(−1)n)
12n2

· · ⌊n
2
⌋

n
(n−1)(2n−1+3(−1)n)

12n2

· · · ⌊n
2
⌋

n

r(4n−2r−1−(−1)n)
4n2

r(4n−2r−1−(−1)n)
4n2

r(2r−1+(−1)n)
4n2

r(2r−1+(−1)n)
4n2
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where the missing entries are determined by p(1, 1|i, j) = p(1, 1|j, i) for i, j ≤ 4.

Theorem 5.10. The strategy Sn,r is self-tested by its correlation for all n, r ∈ N with r < n.

Proof. By Theorem 5.2, the strategy Sn is self-tested by its correlation. Note that the

projection Q(n,r) lies in the image of the span of {P(n)
i }4i=1 under the map sgn. Therefore

Sn,r is self-tested by its correlation by Proposition 5.5. □

Corollary 5.11. Every local binary projective measurement appears in a 5-input 2-output

strategy that is self-tested by its correlation.

Proof. Every binary PVM is, up to unitary basis change, determined by its dimension and

ranks of its projections. Therefore it suffices to consider measurements (Q(n,r), I −Q(n,r)),

and these appear in the 5-input 2-output strategies Sn,r, self-tested by Theorem 5.10. □

Finally, we generalize Theorem 5.10 to arbitrary K-PVMs. Given r1, . . . , rK , n ∈ N with

n = r1 + · · ·+ rK , Remark 5.7 shows that

Q(r1,...,rK)
a := Q(n,r1+···+ra) −Q(n,r1+···+ra−1)

is a projection of rank ra for every a = 1, . . . , K, and(
Q(r1,...,rK)

a

)K
a=1

is a K-PVM. To it we assign a certain bipartite strategy with a mixed number of inputs

and outputs.

Definition 5.12. Let r1, . . . , rK , n ∈ N with n = r1 + · · · + rK . We define a bipartite

strategy Sr1,...,rK that has 4 inputs with 2 outputs and 1 input with K outputs for the first

party, and 4 inputs with 2 outputs for the second party:

Sr1,...,rK =

(
|ϕn⟩ ;

(
P

(n)
i , I −P

(n)
i

)4
i=1

,
(
Q(r1,...,rK)

a

)K
a=1

;
(
P

(n)
i , I −P

(n)
i

)4
i=1

)
.

As for the correlation of Sn,r from Definition 5.9, one can derive similar (yet more involved)

formulae for the correlation of Sr1,...,rK using Remark 5.7, and Propositions 4.4 and 4.5.

Corollary 5.13. Let r1, . . . , rK , n ∈ N with n = r1+ · · ·+rK be arbitrary. Then the strategy

Sr1,...,rK is self-tested by its correlation.

In particular, every single local K-PVM appears in a self-tested strategy that has 8 inputs

with 2 outputs and 1 input with K outputs.

Proof. Let

S =
(
|ψ⟩ ; (Pi, I − Pi)

4
i=1 , (Ra)

K
a=1 ; (Qi, I −Qi)

4
i=1

)
be a bipartite strategy with the same correlation as Sr1,...,rK . Define bipartite strategies that

have 3 + K inputs with 2 outputs for the first party, and 4 inputs with 2 outputs for the
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second party:

S̃ =

(
|ϕn⟩ ;

(
P

(n)
i , I −P

(n)
i

)4
i=1

,
(
Q(n,r1+···+ra)

a , I −Q(n,r1+···+ra)
a

)K−1

a=1
;
(
P

(n)
i , I −P

(n)
i

)4
i=1

)
,

S ′ =
(
|ψ⟩ ; (Pi, I − Pi)

4
i=1 , (R1 + · · ·+Ra, I − (R1 + · · ·+Ra))

K−1
a=1 ; (Qi, I −Qi)

4
i=1

)
.

Since the projections Q(n,r1+···+ra) lie in the image of the span of {P(n)
i }4i=1 under the map

sgn by Proposition 5.6, and the strategy Sn is self-tested by Theorem 5.2, the strategy Ŝ is

self-tested by a repeated application of Proposition 5.5. Therefore S̃ is a local dilation of

S ′. The same local isometries and the ancillary state show that Sr1,...,rK is a local dilation

of S. □

6. Obstructions to constant-sized self-tests

In a sense, maximally entangled states of all dimensions and single binary projective mea-

surements of all dimensions and ranks can be self-tested with a constant number of inputs

and outputs because they form discrete families of objects (i.e., they are parameterized by

one and two natural parameters, respectively). On the other hand, there are no constant-

sized self-tests for all entangled states, nor for all pairs of binary projective measurements,

as implied by the results of this section (for self-tests with varying numbers of inputs, see

[CGJV19] and [CMV23]). The local dimension of subsystems in a quantum strategy is

not directly responsible for the absence of constant-sized self-tests; rather, dimensions of

parameter spaces describing states and pairs of binary projective measurements are the ob-

structions to existence of uniform self-tests. The proofs of statements in this section rely on

notions from real algebraic geometry [BCR98].

By the singular value decomposition, every bipartite |ψ⟩ ∈ Cn ⊗ Cn is, up to a left-right

unitary basis change, equal to
n∑

i=1

ci |i⟩|i⟩

for ci ≥ 0 and
∑n

i=1 c
2
i = 1. The numbers ci are the Schmidt coefficients of |ψ⟩. For example,

all the Schmidt coefficients of |ϕn⟩ are 1√
n
. Note that |ψ⟩ has full Schmidt rank if and only

if ci > 0 for all i.

Proposition 6.1. Let L,K,N ∈ N satisfy

L > (N(K − 1) + 1)2.

Then for all d1, . . . , dL ∈ N there exists a bipartite state with L distinct Schmidt coefficients

of multiplicities d1, . . . , dL that cannot be self-tested by N-inputs and K-outputs.

Proof. Let A denote the set of all N -input K-output bipartite quantum strategies whose

states are of the form

(9) |ψ⟩ =
L∑

ℓ=1

λℓ

dℓ∑
i=dℓ−1+1

|i⟩|i⟩ , λ1 < · · · < λL
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where d0 := 0. In particular, the states in strategies from A have full Schmidt rank and

L distinct Schmidt coefficients of multiplicities d1, . . . , dL. Consider the action of G :=

Ud1(C)× · · · × UdL(C) on A, given by

U ·
(
|ψ⟩ ; (Mi)i; (Nj)j

)
=
(
U ⊗ U |ψ⟩ ; (UMiU

∗)i; (UNjU
∗)j

)
for U = ⊕L

ℓ=1Uℓ ∈ G. Note that G encodes precisely all actions of local unitaries that

preserve the form (9) of states in strategies from S. Let B be the quotient of A with respect

to the action of G, and let π : A → B be the canonical projection. Given S ∈ A let

f(S) ∈ Rd1+···+dL ⊗Rd1+···+dL be its state (i.e., f is the projection onto the first component

of the strategy). To S = (|ψ⟩ ; (Mi)i; (Nj)j) we also assign a tuple g(S) ∈ R(N(K−1)+1)2−1

consisting of

⟨ψ|Mi,a ⊗Nj,b |ψ⟩ , i, j = 1, . . . , N, a, b = 1, . . . , K − 1,

⟨ψ|Mi,a ⊗ I |ψ⟩ , i = 1, . . . , N, a = 1, . . . , K − 1,

⟨ψ| I ⊗Nj,b |ψ⟩ , j = 1, . . . , N, b = 1, . . . , K − 1.

Note that g(S) determines the correlation of S. The set A is semialgebraic and the maps

f, g are semialgebraic [BCR98, Section 2]. Furthermore, B is semialgebraic by [BCR98,

Proposition 2.2.4] since G is a semialgebraic group. The maps f, g factor through π, in the

sense that there are semialgebraic maps f ′, g′ on B satisfying f ′ ◦ π = f and g′ ◦ π = g. Let

C ⊆ B be the set of equivalence classes [S] such that g′−1({g′([S])}) = {[S]}. Then C is

also semialgebraic by [BCR98, Proposition 2.2.4]. Note that if S ∈ A is self-tested by its

correlation then π(S) ∈ C. Observe that dim f ′(B) = L − 1, and dimC = dim g′(C) ≤
(N(K − 1) + 1)2 − 1 by [BCR98, Theorem 2.8.8] since g′|C is injective. Surjectivity of f ′|C
would imply dimC ≥ L − 1, contradicting L − 1 > (N(K − 1) + 1)2 − 1. Therefore f ′|C
is not surjective. In particular, there exists a state |ψ⟩ of the form (9) such that π(S) /∈ C

for every S ∈ f−1({|ψ⟩}). In particular, no N -input K-output strategy containing |ψ⟩ is

self-tested by its correlation. □

By the renowned theorem of Halmos [Hal69], a pair of projections P1, P2 ∈ Mn(C) is, up
ot a unitary basis change, equal to

P1 = ε1 ⊕ · · · ⊕ εo ⊕

(
1 0

0 0

)
⊕ · · · ⊕

(
1 0

0 0

)
,

P2 = ε′1 ⊕ · · · ⊕ ε′o ⊕

(
1
2
+ 1

2
cosα1

1
2
sinα1

1
2
sinα1

1
2
− 1

2
cosα1

)
⊕ · · · ⊕

(
1
2
+ 1

2
cosαL

1
2
sinαL

1
2
sinαL

1
2
− 1

2
cosαL

)
,

(10)

where εi, ε
′
i ∈ {0, 1} and αℓ ∈ (0, π

2
). The number of distinct 2× 2 blocks in (10) equals the

number of distinct positive eigenvalues of i(P1P2 − P2P1).

Proposition 6.2. Let L,N ∈ N satisfy L + 1 > (N + 1)2. Then for all d0, d1, . . . , dL ∈ N
there exists a pair of binary projective measurements (P1, I−P1), (P2, I−P2) with L distinct
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2×2 blocks in (10) with multiplicities d1, . . . , dL and d0 1×1 blocks, that cannot be self-tested

by N-inputs and 2-outputs.

Proof. We proceed analogously as in the proof of Proposition 6.1. The set A consists of

N -input 2-output strategies whose first two measurements are given by projections of the

form (10) with L angles αℓ of multiplicities d1, . . . , dL. Let f : A → Md0+2(d1+···+dL)(R)2 be

the projection onto the pair of projections defining the first two measurements in a strategy.

The group G consists of all unitaries preserving the structure of (10). Then g,B,C are

defined similarly as in the proof of Proposition 6.1, and the same dimension arguments

apply. □

A. Distinguished projections in low dimensions

As a demonstration of Remark 3.2, we construct P
(n)
1 , . . .P

(n)
4 for n ≤ 6.

n = 1: (1), (0), (0), (0)

n = 2: (
0 0

0 0

)
,

(
1 0

0 0

)
,

(
1
4

−
√
3

4
−
√
3

4
3
4

)
,

(
1
4

√
3
4√

3
4

3
4

)

n = 3:

1 0 0

0 1 0

0 0 0

 ,

0 0 0

0 4
9

−2
√
5

9

0 −2
√
5

9
5
9

 ,


1
3

1
3
√
3

√
5

3
√
3

1
3
√
3

1
9

√
5
9√

5
3
√
3

√
5
9

5
9

 ,


1
3

−1
3
√
3

−
√
5

3
√
3

−1
3
√
3

1
9

√
5
9

−
√
5

3
√
3

√
5
9

5
9



n = 4:


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ,


1
4

0 −
√
3

4
0

0 1 0 0
−
√
3

4
0 3

4
0

0 0 0 0

 ,


1
4

−
√
15

16

√
3
8

√
21
16

−
√
15

16
3
8

−3
√
5

16
0

√
3
8

−3
√
5

16
1
2

−
√
7

16√
21
16

0 −
√
7

16
7
8

 ,


1
4

√
15
16

√
3
8

−
√
21

16√
15
16

3
8

3
√
5

16
0

√
3
8

3
√
5

16
1
2

√
7

16
−
√
21

16
0

√
7

16
7
8
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n = 5:


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

 ,


0 0 0 0 0

0 4
25

0 −2
√
21

25
0

0 0 16
25

0 −12
25

0 −2
√
21

25
0 21

25
0

0 0 −12
25

0 9
25

 ,



2
5

3
5
√
5

0
√
21

5
√
5

0
3

5
√
5

8
25

√
7

25

√
21
25

3
√
7

25

0
√
7

25
2
25

−
√
3

25
6
25√

21
5
√
5

√
21
25

−
√
3

25
12
25

−3
√
3

25

0 3
√
7

25
6
25

−3
√
3

25
18
25

 ,



2
5

−3
5
√
5

0 −
√
21

5
√
5

0
−3
5
√
5

8
25

−
√
7

25

√
21
25

−3
√
7

25

0 −
√
7

25
2
25

√
3

25
6
25

−
√
21

5
√
5

√
21
25

√
3

25
12
25

3
√
3

25

0 −3
√
7

25
6
25

3
√
3

25
18
25



n = 6:



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,



1
9

0 0 −2
√
2

9
0 0

0 4
9

0 0 −2
√
5

9
0

0 0 1 0 0 0
−2

√
2

9
0 0 8

9
0 0

0 −2
√
5

9
0 0 5

9
0

0 0 0 0 0 0


,



13
36

1
4
√
3

−
√

35
3

12

√
2
9

√
5
3

4
0

1
4
√
3

7
36

0 −1
4
√
6

√
5
9

√
55
6

12

−
√

35
3

12
0 5

12

−
√

35
6

6
0 0

√
2
9

−1
4
√
6

−
√

35
6

6
17
36

−
√

5
6

4
0√

5
3

4

√
5
9

0
−
√

5
6

4
23
36

−
√

11
6

12

0

√
55
6

12
0 0

−
√

11
6

12
11
12


,



13
36

−1
4
√
3

√
35
3

12

√
2
9

−
√

5
3

4
0

−1
4
√
3

7
36

0 1
4
√
6

√
5
9

−
√

55
6

12√
35
3

12
0 5

12

√
35
6

6
0 0

√
2
9

1
4
√
6

√
35
6

6
17
36

√
5
6

4
0

−
√

5
3

4

√
5
9

0

√
5
6

4
23
36

√
11
6

12

0
−
√

55
6

12
0 0

√
11
6

12
11
12


To obtain Qn,r, one computes Qn,r =

∑r
i=1 |ei⟩⟨ei| where |ei⟩ are unit eigenvectors of

P
(n)
3 + P

(n)
4 corresponding to the r smallest eigenvalues in increasing order. Examples for

r < n ≤ 5 are given below.

n = 2, r = 1: (
1 0

0 0

)
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n = 3, r = 1, 2: 0 0 0

0 5
6

−
√
5

6

0 −
√
5

6
1
6

 ,

1 0 0

0 5
6

−
√
5

6

0 −
√
5

6
1
6


n = 4, r = 1, 2, 3:

3
4

0 −
√
3

4
0

0 0 0 0
−
√
3

4
0 1

4
0

0 0 0 0

 ,


3
4

0 −
√
3

4
0

0 1 0 0
−
√
3

4
0 1

4
0

0 0 0 0

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


n = 5, r = 1, 2, 3, 4:

0 0 0 0 0

0 0 0 0 0

0 0 9
10

0 −3
10

0 0 0 0 0

0 0 −3
10

0 1
10

 ,


0 0 0 0 0

0 7
10

0 −
√
21

10
0

0 0 9
10

0 −3
10

0 −
√
21

10
0 3

10
0

0 0 −3
10

0 1
10

 ,


1 0 0 0 0

0 7
10

0 −
√
21

10
0

0 0 9
10

0 −3
10

0 −
√
21

10
0 3

10
0

0 0 −3
10

0 1
10

 ,


1 0 0 0 0

0 1 0 0 0

0 0 9
10

0 −3
10

0 0 0 1 0

0 0 −3
10

0 1
10


n = 6, r = 1, 2, 3, 4, 5:

0 0 0 0 0 0

0 5
6

0 0 −
√
5

6
0

0 0 0 0 0 0

0 0 0 0 0 0

0 −
√
5

6
0 0 1

6
0

0 0 0 0 0 0


,



2
3

0 0 −
√
2

3
0 0

0 5
6

0 0 −
√
5

6
0

0 0 0 0 0 0
−
√
2

3
0 0 1

3
0 0

0 −
√
5

6
0 0 1

6
0

0 0 0 0 0 0


,



2
3

0 0 −
√
2

3
0 0

0 5
6

0 0 −
√
5

6
0

0 0 1 0 0 0
−
√
2

3
0 0 1

3
0 0

0 −
√
5

6
0 0 1

6
0

0 0 0 0 0 0


,



1 0 0 0 0 0

0 5
6

0 0 −
√
5

6
0

0 0 1 0 0 0

0 0 0 1 0 0

0 −
√
5

6
0 0 1

6
0

0 0 0 0 0 0


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0
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[ŠBR+23] Ivan Šupić, Joseph Bowles, Marc-Olivier Renou, Antonio Aćın, and Matty J. Hoban. Quantum
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