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Abstract. Recently, there have been exciting developments on the in-
terplay between representation theory of finite groups and determinan-
tal hypersurfaces. For example, a finite Coxeter group is determined
by the determinantal hypersurface described by its natural generators
under the regular representation. This short note solves three prob-
lems about extending this result in the negative. On the affirmative
side, it is shown that a quantization of a determinantal hypersurface,
the so-called free locus, correlates well with representation theory. If
A1, . . . , A` ∈ GLd(C) generate a finite group G, then the family of hy-
persurfaces {X ∈ Mn(C)d : det(I + A1 ⊗X1 + · · · + A` ⊗X`) = 0} for
n ∈ N determines G up to isomorphism.
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1. Introduction

To A0, . . . , A` ∈ Md(C) one assigns the determinantal hypersurface

{[ξ0 : · · · : ξ`] ∈ CP` : det(ξ0A0 + · · ·+ ξ`A`) = 0}. (1.1)

This is a classical object in algebraic geometry [Dic21, dCEP18, Bea00,
Dol12], where a key question asks which hypersurfaces admit determinantal
representations. When Aj are real symmetric matrices, determinantal hyper-
surfaces pertain to hyperbolic and stable polynomials [HV07, Brä11, KV12,
Wag11, Vol19]. The geometry of the hypersurface (1.1) is also explored in
multivariate operator theory [Yan09, CY13, CSZ16]. If Aj are bounded op-
erators on a Hilbert space and the determinant in (1.1) is replaced with the

The first author was supported by the Slovenian Research Agency grants J1-8132, N1-0057,
P1-0222, and partially supported by the Marsden Fund Council of the Royal Society of

New Zealand.



2 I. Klep and J. Volčič

condition that ξ0A0 + · · · + ξ`A` is not invertible, then (1.1) is known as
the projective joint spectrum of A0, . . . , A` (cf. Taylor spectrum [Tay70] for
ensembles of commuting operators).

Through the work of Frobenius [Fro68] and Dedekind [Ded68] on group
determinants (see also [Dic02]), determinantal hypersurfaces also pertain
to representation theory. Several fascinating developments in this direction
[ST15, GY17, ČST18] have been recently made. This note addresses certain
limitations for extensions of these results.

Let G be a finitely generated group. If T = (g1, . . . , g`) is a finite se-
quence of generators for G and ρ : G → GLd(C) is a representation of G,
then denote

Z1(T, ρ) =
{
ξ ∈ C` : det (Id + ξ1ρ(g1) + · · ·+ ξ`ρ(g`)) = 0

}
. (1.2)

It is natural to ask what kind of information the affine hypersurface Z1(T, ρ)
carries about ρ and G. For example, if G1, G2 are finite groups with left
regular representations λ1, λ2, then Z1(G1 \ {1}, λ1) = Z1(G2 \ {1}, λ2) im-
plies that G1, G2 are isomorphic [FS91]. However, one is typically interested
in smaller generating sets or in finitely generated groups which are not nec-
essarily finite. In [GY17], the authors computed the joint spectrum for the
infinite dihedral group

D∞ = 〈a, t | a2 = t2 = 1〉
with respect to the generating set (1, a, t), and analyzed its properties through
the representation theory of D∞. Determinantal hypersurfaces also have a
strong connection with representation theory in the case of finite Coxeter
groups [ČST18]. A Coxeter group is a finitely generated group on generators
g1, . . . , g` satisfying

(gigj)
mij = 1

where mii = 1 and mij ≥ 2 for i 6= j. In [ČST18] the authors first showed
that if G is a finite Coxeter group, λ is its left regular representation, and
T = (g1, . . . , g`) are the generators as above, then Z1(T, λ) determines G up
to isomorphism. Furthermore, if G is not of exceptional type (in the Coxeter
diagram sense) and ρ is an arbitrary finite-dimensional representation of G,
then Z1(T, ρ) determines ρ.

These theorems were presented during the Multivariable Spectral The-
ory and Representation Theory workshop at the Banff International Research
Station in April 2019. Several problems about extending these results beyond
Coxeter groups were posed by the speakers; among them were the following.

Questions 1.1. Let G be a finite group, T a fixed generating set for G, and
ρ1, ρ2 irreducible complex representations of G.

(1) Is Z1(T, ρ1) a reduced and irreducible hypersurface?
(2) If Z1(T, ρ1) = Z1(T, ρ2), are ρ1 and ρ2 equivalent?

As usual, ρ1 : G → GLd1(C) and ρ2 : G → GLd2(C) are equivalent if
d1 = d2 and ρ2 = Pρ2P

−1 for some P ∈ GLd1(C). A representation ρ1 is irre-
ducible if its image does not admit a nontrivial common invariant subspace;
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equivalently, it generates Md1(C) as a C-algebra by Burnside’s theorem [Isa76,
Corollary 1.17]. The hypersurface Z1(T, ρ1) is reduced and irreducible (in the
scheme-theoretic sense) if its defining determinant in (1.2) is an irreducible
polynomial. The main result of this note is the following.

Theorem 1.2. Questions 1.1(1) & (2) have negative answers in general.

See Subsections 2.1 and 2.2 for concrete examples. On a more posi-
tive side, in Section 3 we show that representation theory aligns well with
a quantization of the determinantal hypersurface, the free locus; see Theo-
rem 3.1. Furthermore, Proposition 3.4 determines whether a free locus arises
from a representation of a finite group, and Proposition 3.7 characterizes fi-
nite abelian groups from the perspective of determinantal hypersurfaces. We
conclude this note with an open question.

2. Representations versus determinants

In this section we give negative answers to Questions 1.1. The representations
were found with the help of the computer algebra system GAP and the online
repository ATLAS of Finite Group Representations. Verifying equivalence
and irreducibility of representations was sometimes done symbolically with
the computing system Mathematica.

2.1. Irreducible representation with reducible determinant

The alternating group G = A6 admits a presentation

G =
〈
g1, g2 | g21 , g42 , (g1g2)5, (g1g

2
2)5
〉
.

Let

A1 =



1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
−1 −1 −1 −1 −1 −1 −1 −1 −1


and

A2 =



0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0


.
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Then ρ(g1) = A1 and ρ(g2) = A2 determines a faithful and irreducible rep-
resentation ρ : G→ GL9(C). Indeed, we can directly check that

A2
1 = A4

2 = (A1A2)5 = (A1A
2
2)5 = I,

so ρ is a representation of G, and is moreover faithful since it is nontrivial
and G is simple. Furthermore, all the possible products of A1 and A2 with at
most 8 factors span the whole M9(C), so ρ is irreducible. However, we claim
that the curve Z1((g1, g2), ρ) in C2 is not irreducible. We can compute the
determinant of I + x1ρ(g1) + x2ρ(g2),

det



1 + x1 x2 0 0 0 0 0 0 0
0 1 x1 x2 0 0 0 0 0
0 x1 1 0 x2 0 0 0 0
0 0 0 1 x1 x2 0 0 0
0 0 0 x1 1 0 x2 0 0
x2 0 0 0 0 1 0 x1 0
0 0 0 0 0 0 1 + x1 0 x2
0 0 0 0 0 x1 0 1 + x2 0

−x1 −x1 x2 − x1 −x1 −x1 −x1 −x1 −x1 1− x1


by cofactor expansion along the rows. The reader will have no difficulty ver-
ifying that det(I + x1ρ(g1) + x2ρ(g2)) equals

1 + x1 − 4x21 − 4x31 + 6x41 + 6x51 − 4x61 − 4x71 + x81 + x91 + x2 + 2x1x2 − 2x21x2

− 6x31x2 + 6x51x2 + 2x61x2 − 2x71x2 − x81x2 + x21x
2
2 + x31x

2
2 − 2x41x

2
2 − 2x51x

2
2

+ x61x
2
2 + x71x

2
2 − x21x32 + 2x41x

3
2 − x61x32 − 2x42 + x21x

4
2 − x31x42 + x41x

4
2 + x51x

4
2

− 2x52 − 2x1x
5
2 − x21x52 + x41x

5
2 − x21x62 − x31x62 + x21x

7
2 + x82 − x1x82 + x92

which is the product of the following two irreducible polynomials:

1 + 2x1 − 2x31 − x41 + x1x2 + 2x21x2 + x31x2 − x1x22 − x21x22 + x1x
3
2 − x42,

1− x1 − 2x21 + 2x31 + x41 − x51 + x2 − x1x2 − x21x2 + x31x2 − x42 − x52.

Some of the subsequent examples are presented in a more terse way to main-
tain the focus on their intent.

Note that the above irreducible representation of A6 has dimension
9, which is not the minimum among nontrivial complex representations of
A6; namely, A6 admits a representation σ of minimal dimension 5, and
Z1((g1, g2), σ) is irreducible. One might thus be tempted to suggest that
for a group G generated by a finite set T and its (irreducible) representation
σ of minimal dimension, Z1(T, σ) is irreducible. However, even this weaker
conjecture fails. The counterexample is given by the Janko group J2,

J2 =
〈
g1, g2 | g21 , g32 , (g1g2)7, (g1g2g

−1
1 g−12 )12, (g1g2(g1g2g1g

−1
2 )2)6

〉
.

This sporadic simple group of order 604800 admits two non-isomorphic com-
plex representations σ1, σ2 of minimal dimension 14, courtesy of ATLAS of Fi-
nite Group Representations. As in the previous example (albeit with slightly



Group representations, determinantal hypersurfaces and quantizations 5

longer calculations), one can explicitly check that the curve Z1((g1, g2), σ1) =
Z1((g1, g2), σ2) has two irreducible components.

2.2. Non-equivalent representations with the same determinant

The classical group G = GL2(Z/3Z) admits the presentation

G =
〈
g1, g2, g3 | g21 , (g1g−12 )2, (g1g

−1
3 )2, g22g3g

−1
2 g3, g2g

2
3g2g

−1
3

〉
.

Let A1, A2, A3 be the matrices(
− 1√

2
− 1

2 −
i
2

− 1
2 + i

2
1√
2

)
,

(
1
2 + i

2
1√
2

− 1√
2

1
2 −

i
2

)
,

(
1
2 −

i
2

i√
2

i√
2

1
2 + i

2

)
.

There are faithful irreducible unitary representations ρ+, ρ− : G → GL2(C)
given by

ρ±(g1) = ±A1, ρ±(g2) = A2, ρ±(g3) = A3.

It is easy to check that ρ+ and ρ− are not equivalent. On the other hand,

Z1((g1, g2, g3), ρ±) = {(ξ1, ξ2, ξ3) : 1− ξ21 + ξ2 + ξ22 + ξ3 + ξ23 = 0}.

3. Free locus perspective

In this section we will see how representations of a finitely generated group
are determined by a noncommutative relaxation of (1.2). To A ∈ Md(C)` we
associate the monic matrix pencil LA = I + A1x1 + · · · + A`x` of size d in
freely noncommuting variables x = (x1, . . . , x`). Thus L is an affine matrix
over the free algebra C<x>. At a matrix point X ∈ Mn(C)` it evaluates as

LA(X) = Idn +A1 ⊗X1 + · · ·+A` ⊗X` ∈ Mdn(C).

The free locus [KV17] of LA is the disjoint union of determinantal hypersur-
faces

Z (LA) =
⊔
n∈N

Zn(LA), Zn(LA) =
{
X ∈ Mn(C)` : detLA(X) = 0

}
.

Given a group G generated by T = (g1, . . . , gn) and a complex representation
ρ : G→ GLd(C), we write

Z (T, ρ) = Z
(
Lρ(g1),...,ρ(g`)

)
. (3.1)

By the definition of the free locus we see that (3.1) is indeed a quantization
of (1.2). The existing results on free loci [KV17, HKV18] readily apply to
group representations.

Theorem 3.1. For i = 1, 2 let Gi be a group generated by a finite sequence Ti
and let ρi be a complex representation of Gi. Assume |T1| = |T2|.
(1) If ρi is irreducible, then there exists n0 ∈ N such that Zn(T1, ρ1) is a

reduced and irreducible hypersurface for all n ≥ n0.
(2) If ρ1 and ρ2 are irreducible, then Z (T1, ρ1) = Z (T2, ρ2) if and only if

G1/ ker ρ1 ∼= G2/ ker ρ2 and ρ1, ρ2 are equivalent.
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(3) For i = 1, 2 assume that Gi is finite and ρi is a faithful representation.
Then Z (T1, ρ1) = Z (T2, ρ2) if and only if G1

∼= G2 via an isomorphism
mapping T1 to T2.

Proof. (1) A consequence of [HKV18, Theorem 3.4].
(2) A consequence of [KV17, Theorem 3.11].
(3) Let Ti be the C-algebra generated by Ti. Since Gi is finite, its group

algebra CGi is semisimple by Maschke’s theorem [Isa76, Theorem 1.9]. Since
Ti is a quotient of CGi, it is also semisimple. Then Z (T1, ρ1) = Z (T2, ρ2)
if and only if T1 7→ T2 induces an algebra isomorphism T1 → T2 by [KV17,
Corollary 3.8]. This isomorphism then restricts to the group isomorphism
G1 → G2. �

Remark 3.2. There is a deterministic bound on n0 in Theorem 3.1(1) that
is exponential in |T1| and the dimension of ρ1 by [HKV18, Remark 3.5] (the
bound is likely not optimal). Similarly, to verify Z (T1, ρ1) = Z (T2, ρ2) of
Theorem 3.1(2,3), it suffices to check Zn(T1, ρ1) = Zn(T2, ρ2) for a fixed large
enough n, exponential in |Ti| and the dimension of ρi by [KV17, Remark 3.7].

Free loci are defined for monic pencils with arbitrary matrix coefficients;
we now describe how the geometry of the free locus Z (LA) detects whether
the coefficients A1, . . . , A` generate a finite group. See also [DFO’B13] for
an efficient algorithm that determines finiteness of a finitely generated linear
group.

Definition 3.3. Let `, n ∈ N. Let C ∈ GLn(Z) be the permutation matrix
corresponding to the cycle (1 2 · · · n). If {1, . . . , n} = S1 t · · · t S` and Pj is
the orthogonal projection onto span{ek : k ∈ Sj}, then the matrix point

X = (P1C, · · · , P`C) ∈ Mn(Z)`

is called a cycle partition. For given `, n we thus have `n cycle partitions.

Let µ∞ ⊂ C \ {0} be the group of all roots of unity. The next proposi-
tion shows that if A1, . . . , A` generate a finite group, then Z (LA) intersects
complex lines through cycle partitions only in points from µ∞.

Proposition 3.4. Let A ∈ Md(C)`. Then A1, . . . , A` generate a finite group if
and only if the following hold:

(i) there is a positive definite P ∈ Md(C) such that A∗jPAj = P for all j;
(ii) for every cycle partition X and t ∈ C,

tX ∈ Z (LA) =⇒ t ∈ µ∞.

Proof. (⇐) Every Aj is invertible by (i). Let G be a group generated by
A1, . . . , A`. Also by (i), G is a subgroup of the unitary group in GLd(C) with
respect to the inner product 〈u, v〉 = u∗Pv. Hence every element of G is
diagonalizable. By [Weh73, Corollary 4.9], a finitely generated subgroup of
GLd(C) is finite if and only if it is periodic (or torsion; i.e., every element
has finite order). Since a diagonalizable matrix has a finite order if and only
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if all its eigenvalues lie in µ∞, it suffices to verify that eigenvalues of every
element of G lie in µ∞.

To (i1, . . . , in) ∈ {1, . . . , `}n we associate the cycle partitionX ∈ Mn(Z)`

by choosing Sj = {ek : ik = j}. We claim that tX ∈ Z (LA) if and only if
(−t)n is an eigenvalue of Ai1 · · ·Ain . Indeed, using Schur complements it is
easy to check that

det(I − (−1)ntnAi1 · · ·Ain) = det

(
I tAi1

(−1)ntn−1Ai2 · · ·Ain I

)

= det

 I tAi1 0
0 I tAi2

−(−1)ntn−2Ai3 · · ·Ain 0 I


= · · ·

= det


I tAi1

. . .
. . .

I tAin−1

tAin I


= detLA(tX).

Thus the matrix Ai1 · · ·Ain has finite order if and only if tX ∈ Z (LA) implies
t ∈ µ∞, which holds by (ii).

(⇒) If A1, . . . , A` generate a finite group G, then Cd admits a G-
invariant inner product

〈u, v〉 =
∑
g∈G

(gu)∗(gv).

If P is the positive definite matrix satisfying 〈u, v〉 = u∗Pv, then (i) holds.
Furthermore, the proof of (ii) is already given in the previous paragraph. �

Remark 3.5. If additional information about A1, . . . , A` is given, say that
their entries generate a number field (finite extension of Q), then the size
of the cycle partitions, which have to be tested in Proposition 3.4, can be
bounded using Schur’s theorem on orders of finite matrix groups [Isa76, The-
orem 14.19].

Remark 3.6. Let p ∈ N be prime. If µ∞ in Proposition 3.4 is replaced by the
group of power-of-p roots of unity, one obtains a free locus characterization
of matrix tuples that generate a finite p-group.

We also show how the free locus certifies whether its defining coefficients
generate a finite abelian group. The degree of an affine variety of codimension
m is the number of intersection points of the variety with m hyperplanes in
general position; in the case of a hypersurface, it is simply the degree of its
square-free defining polynomial.

Proposition 3.7. Let G be a finite group generated by A1, . . . , A` ∈ Md(C).
Then G is abelian if and only if the irreducible components of Zn(LA) have
degree n for all n ∈ N.
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Proof. Let A be the C-algebra generated by A1, . . . , A`. As in the proof of
Theorem 3.1(3) we see that A is semisimple. After a basis change (which does
not affect the structure of G or Z (LA)) we can thus assume that

Aj = A
(1)
j ⊕ · · · ⊕A

(s)
j

where A
(k)
1 , . . . , A

(k)
` ∈ Mdk(C) determine an irreducible representation of

G for every k = 1, . . . , s. For X ∈ Mn(C)d let us view detLA(k)(X) as a
polynomial in the entries of X. If dk = 1, then detLA(k)(X) is up to an affine
change of coordinates equal to the determinant of a generic n×n matrix, and
hence an irreducible polynomial of degree n. On the other hand, if dk > 1,
then detLA(k)(X) is a polynomial of degree dkn > n for all n, and irreducible
for all large enough n by [HKV18, Theorem 3.4]. Since G is abelian if and
only if d1 = · · · = ds = 1, and

Zn(LA) = Zn(L
(1)
A ) ∪ · · · ∪Zn(L

(s)
A ),

it follows thatG is abelian if and only if the irreducible components of Zn(LA)
are hypersurfaces of degree n. �

Remark 3.8. If ` = 2 and A1, A2 are hermitian, then Z1(LA) alone determines
whether G is abelian, cf. [MT52].

The last two propositions offer some directions for future research. The-
orem 3.1 implies that the linear group G generated by a tuple A is deter-
mined by Z (LA). It would be interesting to know which properties of G
can be deduced from the geometry of Z (LA). For example, intersections of
Z (LA) with certain lines and hyperplanes determine whether G is finite or
abelian. An open problem is how to decide whether a finite group G is nilpo-
tent/solvable/simple (or any other group-theoretic property) by considering
the geometry of the hypersurfaces Zn(LA).
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