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Abstract. This paper introduces and develops the algebraic framework of moment poly-

nomials, which are polynomial expressions in commuting variables and their formal mixed

moments. Their positivity and optimization over probability measures supported on semi-

algebraic sets and subject to moment polynomial constraints is investigated. A positive

solution to Hilbert’s 17th problem for pseudo-moments is given. On the other hand, mo-

ment polynomials positive on actual measures are shown to be sums of squares and formal

moments of squares up to arbitrarily small perturbation of their coefficients. When only

measures supported on a bounded semialgebraic set are considered, a stronger algebraic

certificate for moment polynomial positivity is derived. This result gives rise to a converg-

ing hierarchy of semidefinite programs for moment polynomial optimization. Finally, as an

application, two nonlinear Bell inequalities from quantum physics are settled.

1. Introduction

Let x1, . . . , xn be independent variables, and let m(xi1
1 · · ·xin

n ) denote their formal mixed
moments. That is, m(xi1

1 · · ·xin
n ) are algebraically independent variables, which in the pres-

ence of a probability measure µ on Rn evaluate as
∫
xi1
1 · · ·xin

n dµ. This paper focuses on
the class of moment polynomials, i.e., polynomials in x1, . . . , xn and their formal moments.
Problems involving moment polynomial inequalities and optimization arise in various fields,
for instance in probability [BBLM05, BP05, MJC+14], statistics [LJ10], operator theory
[CP10], economics [PPHI15], industrial organization [KPT21], partial differential equations
[FF23, HIKV23], and quantum information theory [PHBB17, TGB21, TPKLR22]. To ap-
proach such problems, it is natural to start from the theory built around their moment-free
analogs, namely real algebraic geometry [Mar08]. The cornerstone of real algebraic geome-
try are sums of squares certificates for nonnegative polynomials. Artin’s solution of Hilbert’s
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17th problem characterizes nonnegative polynomials on Rn in terms of sums of squares and
denominators, and Putinar’s Positivstellensatz [Put93] describes polynomials positive on
compact semialgebraic sets in Rn. The latter was groundbreakingly applied to polynomial
optimization in [Las01], resulting in the so-called Lasserre’s hierarchy, based on semidefinite
programming. This hierarchy yields a sequence of nondecreasing lower bounds converging
to the global infimum of a polynomial over a compact semialgebraic set. Positive polyno-
mials also play a crucial role in functional analysis and measure theory through moment
problems [Sch17]. The duality between polynomials positive on a semialgebraic set K and
measures supported on K connects sums of squares certificates with necessary conditions for
solvability of the moment problem on K. The monographs [Las09, HKL20] present many
applications of the moment problem, Lasserre’s hierarchy and its variations. More recent de-
velopments in this field concern nonlinear expressions in moments, and infinite-dimensional
moment problem. In [BRS+22], techniques of tropical geometry are applied to nonnegative
polynomials and moment problems, resulting in classification of moment binomial inequali-
ties. In the recent work [HIKV23], nonlinear partial differential equations are formulated as
moment problems for measures supported on infinite-dimensional vector spaces, and then
results about the infinite-dimensional moment problem in nuclear spaces [IKR14, IKKM23]
are leveraged to derive converging approximations of solutions of differential equations.

In the noncommutative setting, the Helton-McCullough Positivstellensatz [HM04] leads
to similar methods for optimizing eigenvalues of polynomials in matrix or operator vari-
ables [BKP16]. The famous Navascués-Pironio-Aćın hierarchy [NPA08] yields bounds over
the maximal violation levels of linear Bell inequalities, which also relates to the so-called
quantum moment problem [DLTW08]. Motivated by the more difficult study of nonlinear
Bell inequalities [PHBB17] for correlations in quantum networks [TPKLR22], the three au-
thors have recently proposed two nonlinear extensions to optimization problems over trace
[KMV22] and state polynomials [KMVW23], derived from Positivstellensätze for polynomi-
als in noncommuting variables and formal traces or states of their products. In this paper,
we let noncommutative real algebraic geometry offer a new perspective on commutative
problems involving moment polynomials.

Moment polynomials. This paper investigates positivity and optimization of moment
polynomials subject to polynomial relations between the problem variables xj and their
formal mixed moments. For example,

f = m(x1x
3
2)x1x2 − m(x2

1)
3x2

2 + x2 − m(x2)m(x1x2)− 2

is a moment polynomial; at a probability measure µ on R2 with fourth order moments and
a pair (X1, X2) ∈ R2, f evaluates as

f
(
µ, (X1, X2)

)
= X1X2

∫
x1x

3
2 dµ−X2

2

(∫
x2
1 dµ

)3

+X2 −
∫

x2 dµ

∫
x1x2 dµ− 2.

A moment polynomial without freely occurring xj, e.g. m(x
2
1x

2
2)−m(x1)

4+m(x1)m(x2)m(x1x2),
is called pure. The algebra of pure moment polynomials is denoted by M , and the algebra of
moment polynomials is denoted by M [x]. There is a natural M -linear map m : M [x] → M
that corresponds to formal integration. While the algebras M and M [x] are infinitely
generated, we emphasize that the aforementioned infinite-dimensional moment problems
[IKR14, IKKM23] are incompatible with our setup. Namely, as we focus on positivity of



SUMS OF SQUARES CERTIFICATES FOR POLYNOMIAL MOMENT INEQUALITIES 3

moment polynomials over measures on finite-dimensional semialgebraic sets, our algebraic
certificates of positivity are based on the finitely many underlying variables x1, . . . , xn.

Let S1 ⊆ R[x] and S2 ⊆ M . Let K(S1) be the set of points X ∈ Rn such that all
polynomials in S1 are nonnegative at X. Let P(K(S1)) be the set of all Borel probability
measures supported on K(S1), and let K(S1, S2) be the set of measures µ ∈ P(K(S1)) such
that all pure moment polynomials in S2 are nonnegative at µ. Adapting a standard notion
from real algebra [Mar08], we define the quadratic module QM(S1, S2) ⊆ M [x] as the convex
hull of {

f 2s1, f 2m(p2s1), f 2s2 : si ∈ Si ∪ {1}, p ∈ R[x], f ∈ M [x]
}
.

Elements of QM(S1, S2) are clearly nonnegative on K(S1, S2)×K(S1). This paper addresses
the converse, and provides certificates for moment polynomial positivity on K(S1, S2) ×
K(S1) in terms of QM(S1, S2).

Main results. The first positivity certificate applies to archimedean quadratic modules.
Here, QM(S1, S2) is archimedean if N − x2

1 − · · · − x2
n ∈ QM(S1, S2) for some N ∈ N. Note

that the constrained setK(S1) is bounded in this instance. Conversely, ifK(S1) is contained
in a ball of radius R, we may add R2−x2

1−· · ·−x2
n to S1 to obtain an archimedean quadratic

module without shrinking K(S1, S2)×K(S1).

Theorem A (Theorem 4.2). If QM(S1, S2) is archimedean, the following are equivalent for

f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) f + ε ∈ QM(S1, S2) for every ε > 0.

Theorem A is proved using results from real algebra and the solution of the moment prob-
lem for compactly supported measures. Analogously to Lasserre’s hierarchy [Las01] leverag-
ing Putinar’s Positivstellensatz [Put93] in polynomial optimization, we utilize Theorem A
to derive a moment polynomial optimization procedure based on semidefinite programming.

Theorem B (Corollary 5.2). Let QM(S1, S2) be archimedean and f a moment polynomial.

The Positivstellensatz-induced hierarchy of semidefinite programs produces a nondecreasing

sequence converging to the infimum of f on K(S1, S2)×K(S1).

We apply Theorem B to moment polynomial optimization problems from quantum in-
formation theory. Two nonlinear Bell inequalities proposed in [PHBB17] and [TGB21,
TPKLR22] are established. For example, our optimization scheme allows us to solve the
following problem:

sup
1

3

∑
i∈{1,2,3}

(
m(xi+3xi+6)− m(xixi+3)

)
−

∑
{i,j,k}={1,2,3}

m(xixj+3xk+6)

subject to

m(xk1
1 xk2

2 xk3
3 xk4

7 xk5
8 xk6

9 ) = m(xk1
1 xk2

2 xk3
3 )m(xk4

7 xk5
8 xk6

9 ) for ki ∈ {0, 1},
x2
j = 1 and m(xj) = 0 for j ∈ {0, . . . , 9},

m(xixj+3) = m(xi+3xj+6) = 0 for i, j ∈ {1, 2, 3}, i ̸= j,

m(xixj+3xk+6) = 0 for i, j, k ∈ {1, 2, 3}, |{i, j, k}| ≤ 2.

(1.1)
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In Subsection 5.2 it is shown that the solution of (1.1) is 4, attained by certain binary
variables and the uniform measure on 16 points, which answers a question in [TGB21,
TPKLR22].

Next, we address certificates for moment polynomial positivity subject to constraint sets
S1 and S2 without the archimedean assumption. In particular, we aim to describe every-
where nonnegative moment polynomials (i.e., S1 = S2 = ∅). In this particular case, one
might first consider an analog of Hilbert’s 17th problem for moment polynomials (H17): if
f ∈ M [x] is nonnegative on P(Rn) × Rn, can we write it as a quotient of sums of prod-
ucts of elements of the form f 2 and m(f 2) for f ∈ M [x]? It turns out that the answer
to this question is negative (cf. Example 3.7). More precisely, the algebraic certificate
in (H17) characterizes a strictly smaller class of moment polynomials that are nonnega-
tive under pseudo-moment evaluations. A pseudo-moment evaluation is a homomorphism
φ : M [x] → R satisfying φ(m(p2)) ≥ 0 for all p ∈ R[x].

Theorem C (Theorem 3.6). The following are equivalent for f ∈ M [x]:

(i) φ(f) ≥ 0 for every pseudo-moment evaluation φ;

(ii) f is a quotient of sums of products of elements of the form h2 and m(h2) for h ∈ M [x].

The proof of Theorem C relies on the Krivine-Stengle Positivstellensatz and extensions
of positive functionals. The negative answer to (H17) for moment evaluations motivates a
search for a different positivity certificate. In [BRS+22], nonnegative moment binomials are
classified in combinatorial terms. For nonnegative (classical) polynomials in R[x], Lasserre
[Las06] showed that they become sums of squares of polynomials after an arbitrary small
perturbation of their coefficients. Our second main result generalizes Lasserre’s certificate
to moment polynomials.

Theorem D (Theorem 6.7). If S2 is finite, the following are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) for every ε > 0 there exists r ∈ N such that

f + ε
n∑

j=1

r∑
k=0

1

k!

(
x2k
j + m(x2k

j )
)
∈ QM(S1, S2).

The proof of Theorem D uses constructions and techniques from functional analysis,
conic programming and duality. When Theorem D is restricted to polynomials in R[x], it
improves the approximation result in [LN07], which was established under several additional
conditions.

2. Preliminaries

We start by introducing the notation and terminology pertaining to moment polynomials
and their evaluations. Let R[x] = R[x1, . . . , xn] be the polynomial ring in n variables.
Consider the polynomial ring in countably many variables M = R[mi1,...,in : ij ∈ N0] where
m0,...,0 := 1, and denote M [x] = M ⊗ R[x]. Elements of M [x] and M are called moment
polynomials and pure moment polynomials, respectively. There is a canonical unital M -
linear map m : M [x] → M determined by m(xi1

1 · · ·xin
n ) = mi1,...,in . In terms of polynomial

functions on vector spaces, one may (for V = Rn) write R[x] = R[V ], M = R[R[V ]],
M [x] = R[R[V ]× V ].
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Recalling a standard notion from real algebra [Mar08, Section 2.1], a subset M of a
commutative unital ring A is a quadratic module if 1 ∈ M , M +M ⊆ M , and a2M ⊆ M
for a ∈ A. Given S1 ⊆ R[x] and S2 ⊆ M let qm(S1, S2) ⊆ M be the quadratic module in
M generated by

{m(p2s) : p ∈ R[x], s ∈ {1} ∪ S1} ∪ S2,

and let QM(S1, S2) ⊆ M [x] be the quadratic module in M [x] generated by

S1 ∪ {m(p2s) : p ∈ R[x], s ∈ {1} ∪ S1} ∪ S2.

More concretely, qm(S1, S2) is the convex hull of

(2.1) q2m(p2s1), q2s2

for si ∈ {1} ∪ Si, p ∈ R[x] and q ∈ M , and QM(S1, S2) is the convex hull of

(2.2) f 2s1, f 2m(p2s1), f 2s2

for si ∈ Si ∪ {1}, p ∈ R[x] and f ∈ M [x]. Also, let M(S1) ⊂ R[x] denote the quadratic
module in R[x] generated by S1.

Remark 2.1. Observe that qm(S1, S2) ⊆ QM(S1, S2) ∩ M ⊆ m(QM(S1, S2)), and these

inclusions are strict in general (the first one because of term cancellations, and the second

one because of terms of the form m(f 2)m(p2)). Therefore for a pure moment polynomial,

membership in qm(S1, S2) is a stronger property than membership in QM(S1, S2). Thus

when stating our results for moment polynomials and QM(S1, S2), we also state refine-

ments for pure moment polynomials and qm(S1, S2), and the proofs are analogous. The

reason for persisting with qm(S1, S2) is that it leads to smaller optimization problems than

m(QM(S1, S2)).

There is a natural notion of a degree deg on M [x] satisfying

deg xj = 1 and deg mi1,...,in = i1 + · · ·+ in.

For r ∈ N let R[x]r,Mr,M [x]r be the finite-dimensional subspaces of R[x],M ,M [x] of
elements of degree at most r. Also, let qm(S1, S2)2r ⊆ M2r and QM(S1, S2)2r ⊆ M [x]2r be
the convex hulls of elements in M [x]2r of the form (2.1) and (2.2), respectively.
The following lemma identifies certain non-obvious elements of qm(∅, ∅) that are required

later.

Lemma 2.2 (Symbolic univariate Hölder’s inequality). Let n = 1. Then m2k−m2k1 ∈ qm(∅, ∅)
for all k ∈ N.

Proof. For k ∈ N and ℓ = ⌈log2 k⌉ let a0, . . . , aℓ−1 be recursively defined as a0 = k and

ai+1 = ⌈ai
2
⌉. Denote r(ai) = 0 if ai is even and r(ai) = 1 if ai is odd. Observe that

ai + r(ai) = 2ai+1 for i < ℓ− 1, and aℓ−1 = 2 if ℓ > 1. We claim that

(2.3) m2k − m2k1 = k m

((
mk1 − x1m

k−1
1

)2)
+

ℓ−1∑
i=0

2i m

((
x
r(ai)
1 m

k−r(ai)
1 − xai

1 m
k−ai
1

)2)
.
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Indeed, the right-hand side of (2.3) expands as

k
(
m2m

2(k−1)
1 − m2k1

)
+

ℓ−1∑
i=0

2i
(
m2r(ai)m

2(k−r(ai))
1 − 2mai+r(ai)m

2k−(ai+r(ai))
1 + m2aiy

2(k−ai)
1

)
= k

(
m2m

2(k−1)
1 − m2k1

)
+

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1 + m2a0m

2(k−a0)
1 − 2ℓmaℓ−1+r(aℓ−1)m

2k−(aℓ−1+r(aℓ−1))
1

= k
(
m2m

2(k−1)
1 − m2k1

)
+ m2k − 2ℓm2m

2(k−1)
1 +

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1

= m2k − m2k1 −
(
(k − 1)m2k1 + (2ℓ − k)m2m

2(k−1)
1

)
+

ℓ−1∑
i=0

2im2r(ai)m
2(k−r(ai))
1

= m2k − m2k1

because 2ℓ − k =
∑ℓ−1

i=0 2
ir(ai) and k − 1 =

∑ℓ−1
i=0 2

i(1− r(ai)). □

2.1. Moment evaluations of moment polynomials. There are two natural (and closely
related) types of evaluations of moment polynomials. For a closed (but not necessarily
bounded) set K ⊆ Rn let P(K) denote the set of Borel probability measures µ on Rn

that are supported on K and admit all marginal moments (that is,
∫
x2k
j dµ < ∞ for all

j = 1, . . . , n and all k ∈ N). By Hölder’s inequality, it follows that such measures admit all
mixed moments. Note that a Borel probability measure on Rn is always a Radon measure
by [Par05, Theorem II.3.2]. Each pair (µ,X) ∈ P(Rn)×Rn gives rise to the homomorphism

(2.4) M [x] → R, f 7→ f(µ,X)

determined by

mi1,...,in 7→
∫

xi1
1 · · ·xin

n dµ, xj 7→ Xj.

Such homomorphisms are called moment evaluations.
Let (P ,Σ, π) be a probability space. For p ∈ N let Lp(P ,Σ, π) be the space of real-valued

random variables F on P such that
∫
|F |p dπ < ∞. There is a partial order⪰ on Lp(P ,Σ, π),

given as f ⪰ g if f ≥ g almost everywhere. Consider the ring Lω(π) :=
⋂∞

p=1 Lp(P ,Σ, π)

introduced in [Are46]. For F = (F1, . . . , Fn) ∈ Lω(π)n, all the mixed moments of F exist,
and we can define the homomorphism

(2.5) M [x] → Lω(π), f 7→ f [π, F ]

determined by

mi1,...,in 7→
∫

F i1
1 · · ·F in

n dπ, xj 7→ Fj.

The restrictions of homomorphisms (2.4) and (2.5) to M coincide (when we view Rn as a
probability space with the Borel sigma algebra). Observe that the homomorphism (2.5) in-
tertwines m : M [x] → M and integration with respect to π. In contrast, the homomorphism
(2.4) does not satisfy such an intertwining property.

For S1 ⊆ R[x] and S2 ⊆ M let

K(S1) = {X ∈ Rn : p(X) ≥ 0 for all p ∈ S1} ⊆ Rn,
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K(S1, S2) = {µ ∈ P(K(S1)) : s(µ) ≥ 0 for all s ∈ S2} ⊆ P(K(S1)).

The following proposition indicates that evaluations (2.4) and (2.5) are essentially equiv-
alent from the perspective of moment polynomial positivity.

Proposition 2.3. Let S1 ⊆ R[x] and S2 ⊆ M . The following are equivalent for f ∈ M [x]:

(i) f(µ,X) ≥ 0 for all (µ,X) ∈ K(S1, S2)×K(S1);

(ii) f [π, F ] ⪰ 0 for every probability measure π and a random variable F ∈ Lω(π)n with

values in K(S1)
n such that s[π, F ] ≥ 0 for all s ∈ S2.

Proof. (i)⇒(ii): Suppose a probability space (P ,Σ, π) and a random variable F on P with

values in K(S1)
n satisfy s[π, F ] ≥ 0 for all s ∈ S2. Let µ be the pushforward of π induced by

F . Then for all P ∈ P we have (µ, F (P )) ∈ K(S1, S2)×K(S1) and f(µ, F (P )) = f [π, F ](P ).

Thus (i) implies (ii). Conversely, (i) is a special case of (ii) (where the probability space

is K(S1) endowed with the σ-algebra of Borel sets and the measure µ, and the coordinate

functions are considered as random variables), so (ii) implies (i). □

In the rest of the paper, we mostly deal with evaluations of the first type. The following
statement is a straightforward consequence of definitions.

Proposition 2.4. Let S1 ⊆ R[x] and S2 ⊆ M . If f ∈ QM(S1, S2) then f ≥ 0 on K(S1, S2)×
K(S1).

We conclude this section with a renowned quadrature result, which is also relevant for
evaluations of moment polynomials, and is utilized in several subsequent proofs.

Proposition 2.5 (Tchakaloff’s theorem [Put97, Theorem 2]). Let S1 ⊆ R[x]. For every

µ ∈ P(K(S1)) and d ∈ N there exists ν ∈ P(K(S1)) with | supp ν| ≤
(
n+d
d

)
such that

mi1,...,in(ν) = mi1,...,in(µ) for all i1 + · · ·+ in ≤ d.

Thus if S2 ⊂ M is finite, f ∈ M [x] and d = max{deg f, deg s : s ∈ S2}, then f ≥ 0 on

K(S1, S2)×K(S1) if and only if f ≥ 0 on
{
ν ∈ K(S1, S2) : | supp ν| ≤

(
n+d
d

)}
×K(S1).

Remark 2.6. Proposition 2.5 in principle allows to reformulate a moment polynomial opti-

mization problem as a classical polynomial optimization problem in the following way. Let

S1 ⊂ R[x] and S2 ⊂ M be finite, and f ∈ M [x]. Denote d = max{deg f, deg s : s ∈ S2}
and D =

(
n+d
d

)
. By Proposition 2.5, the infimum of f on K(S1, S2)×K(S1) is equal to

inf
X,Y 1,...,Y D,α1,...,αD

f

(
D∑
i=1

αiδY i
, X

)
subject to

s

(
D∑
i=1

αiδY i
, X

)
≥ 0 for s ∈ S2,

X, Y 1, . . . , Y D ∈ K(S1),

α1, . . . , αD ≥ 0,
D∑
i=1

αi = 1.

(2.6)
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Here, δY i
denotes the Dirac delta measure concentrated at Y i ∈ Rn. While (2.6) minimizes

a polynomial function subject to polynomial constraints, and can be thus approached with

standard methods of polynomial optimization, it has n+Dn+D = (
(
n+d
d

)
+ 1)(n+ 1)− 1

variables. This number quickly rises beyond the capabilities of solvers for global nonlinear

optimization (see Subsection 5.1 for a concrete example). Furthermore, the problem (2.6)

does not fully utilize the structure of moment polynomials; e.g. Y i can be permuted, αi

always appears jointly with Y i, and so on. Moment polynomial optimization procedure

bypassing these issues is developed in Section 5 below.

3. Pseudo-moments and Hilbert’s 17th problem for moment polynomials

In this section we consider pseudo-moment evaluations of moment polynomials. We give
a solution to a natural version of Hilbert’s 17th problem for pseudo-moment evaluations
(Theorem 3.6). In particular, since positivity on pseudo-moments is stricter than positiv-
ity on moments, our solution implies that moment polynomials with nonnegative moment
evaluations are not necessarily rational consequences of f 2 and m(f 2) for f ∈ M [x].

Let [x]d denote all monomials in R[x] of degree at most d, ordered degree-lexicographically
according to x1 > · · · > xn. For d ∈ N let Hd = (uv)u,v∈[x]d be the symbolic Hankel matrix
over R[x] of order d. For any map α on R[x], let α(Hd) denote the matrix obtained by
applying α entry-wise to Hd.

Lemma 3.1. Let ϕ : M [x] → R be a homomorphism of R-algebras. The following are

equivalent:

(i) ϕ(m(f 2)) ≥ 0 for all f ∈ M [x];

(ii) ϕ(m(p2)) ≥ 0 for all p ∈ R[x];
(iii) (ϕ ◦ m)(Hd) is positive semidefinite for all d ∈ N.

Proof. (ii)⇔(iii) and (i)⇒(ii) are clear. Suppose (ii) holds. Let f ∈ M [x], and write it as

f =
∑

i qipi for qi ∈ M and pi ∈ R[x]. Then

ϕ
(
m(f 2)

)
=
∑
i,j

ϕ(qi)ϕ(qj)ϕ (m(pipj)) = ϕ

(
m

((∑
i

ϕ(qi)pi

)2))
≥ 0,

so (i) holds. □

Homomorphisms satisfying the equivalent conditions in Lemma 3.1 are called pseudo-
moment evaluations of moment polynomials. Note that a pseudo-moment evaluation ϕ :
M [x] → R is uniquely determined by ϕ(xj) for j = 1, . . . , n, and a unital linear functional
L : R[x] → R given by L(p) = ϕ(m(p)) and satisfying L(p2) ≥ 0 for all p ∈ R[x].

Remark 3.2. There is a certain nuance in Lemma 3.1. Namely, the implication (ii)⇒(i)

fails in general for homomorphisms M [x] → R where R is a closed real field containing R,
even when n = 1. Indeed, by [KPV21, Example 2.6] there exist a real closed field R and a

homomorphism ϕ : M → R such that ϕ(m(p2)) ≥ 0 for all p ∈ R[x], and ϕ(m2 − m21) < 0,

even though m2 − m21 = det m(H2) = m((x1 − m1)
2) ∈ qm(∅, ∅).
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Pseudo-moment evaluations form a strictly larger class than moment evaluations. The
pure moment polynomial m4,2m2,4 − m32,2 is nonnegative under all moment evaluations, but
not under all pseudo-moment evaluations by [BRS+22, Example 4.15] (see Example 3.7
for an alternative argument). Theorem 3.6 below gives a sums of squares certificate with
denominators for moment polynomials that are nonnegative under all pseudo-moment eval-
uations. For a sums of squares certificate with perturbations for moment polynomials that
are nonnegative under all moment evaluations, see Theorem 6.7.

The proof of Theorem 3.6 requires some additional terminology from real algebra [Mar08].
A preordering P in a commutative unital ring A is a quadratic module closed under mul-
tiplication. For d ∈ N let Md ⊂ M be the polynomial ring generated by {m(u) : u ∈ [x]d},
and let Md[x] = Md ⊗ R[x]. Let Pd denote the preordering in M2d[x] generated by the
principal minors of m(Hd), and let Ω denote the preordering in M generated by QM(∅, ∅).

Lemma 3.3. Every principal minor of Hd is a quotient of elements in Ω.

Proof. Straightforward adaptation of [KMVW23, Proposition 4.2]. □

Lemma 3.4. If a unital functional L : R[x]2d → R satisfies L(p2) > 0 for p ∈ R[x]d \ {0},
then it extends to a unital functional L̃ : R[x] → R satisfying L̃(p2) > 0 for p ∈ R[x] \ {0}.

Proof. For α > 0 consider the linear functional Lα : R[x]2d+2 → R defined on monomials

u ∈ [x]2d+2 as follows:

L(u) =


L(u) if u ∈ [x]2d,

0 if u ∈ [x]2d+1 \ [x]2d,
α
∫
[0,1]n

u dx1 · · · dxn if u ∈ [x]2d+2 \ [x]2d+1.

Applying Lα entry-wise to Hd+1 results in

Lα(Hd+1) =

(
L(Hd) B∗

B αK

)
,

where L(Hd) and K are positive definite matrices. Since L(Hd) is invertible, L(Hd+1) is

positive definite if and only if αK−B∗L(Hd)
−1B is positive definite. This is indeed the case

for a sufficiently large α > 0. Thus we showed that L extends to a functional on R[x]2d+2

that is positive on m(p2) for p ∈ R[x]d+1 \ {0}. Continuing inductively in this fashion, we

obtain L̃ : R[x] → R that extends L and satisfies L̃(p2) > 0 for p ∈ R[x] \ {0}. □

Lemma 3.5. For every ε > 0, d ∈ N, and a unital linear functional L : R[x]2d → R
satisfying L(p2) ≥ 0 for p ∈ R[x]d, there exists a unital linear functional L̃ : R[x]2d → R
satisfying L̃(p2) > 0 for p ∈ R[x]d \ {0}, and |L̃(u)− L(u)| < ε for u ∈ R[x]2d.

Proof. Note that the unital functional L0 : R[x] → R given by L0(p) =
∫
[0,1]n

p dx1 · · · dxn

satisfies L0(p
2) > 0 for p ∈ R[x] \ {0}. Then L̃ = (1 − δ)L + δL0 for a sufficiently small

δ > 0 has the desired properties. □

Theorem 3.6. Let f ∈ M [x]. Then all pseudo-moment evaluations of f are nonnegative

if and only if f is a quotient of sums of products of elements in QM(∅, ∅).
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Proof. (⇒): Let d = deg f . Assume f is not a quotient of sums of products of elements in

QM(∅, ∅). Then f is not a quotient of elements in Pd by Lemma 3.3. By the Krivine-Stengle

Positivstellensatz [Mar08, Theorem 2.2.1] there is a homomorphism ϕ : Md[x] → R such

that ϕ(f) < 0 and (ϕ ◦ m)(Hd) is positive semidefinite. Note that ϕ is determined by ϕ(xj)

for j = 1, . . . , n and the linear functional L : R[x]d → R given by L(p) = ϕ(m(p)). By

Lemma 3.5 we can slightly perturb L, so that L(m(p2)) > 0 for p ∈ R[x]d \ {0}, and still

ϕ(f) < 0. By Lemma 3.4, L extends to L̃ : R[x] → R such that L̃(p2) ≥ 0 for p ∈ R[x].
Define a homomorphism ϕ̃ : M [x] → R determined by ϕ̃(p) = ϕ(p) and ϕ̃(m(p)) = L̃(p) for

p ∈ R[x]. Then ϕ̃ is a pseudo-moment evaluation by Lemma 3.1, and ϕ̃(f) < 0.

(⇐): Let f = g
h
where g, h ̸= 0 are sums of products of elements in QM(∅, ∅). Suppose

f(µ,X) < 0 for some (µ,X) ∈ P(Rn)× Rn. Note that g(ν, Y ), h(ν, Y ) ≥ 0 for all (ν, Y ) ∈
P(Rn) × Rn. Since h ̸= 0, there exists (µ′, X ′) ∈ P(Rn) × Rn such that h(µ,X) > 0. For

ε ∈ [0, 1] let Xε = (1− ε)X + εX ′ and µε = (1− ε)µ+ εµ′. Then there exists a sufficiently

small ε > 0 so that f(µε, Xε) < 0 and h(µε, Xε) > 0. Then

0 > h(µε, Xε)f(µε, Xε) = g(µε, Xε) ≥ 0,

a contradiction. □

Example 3.7. Let f = m4,2m2,4 − m32,2. All moment evaluations of f are nonnegative by

Hölder’s inequality. On the other hand, consider the functional L : R[x]6 → R given on the

Hankel matrix H3 as

(3.1) L(H3) =



1 0 0 5 0 5 0 0 0 0

0 5 0 0 0 0 26 0 2 0

0 0 5 0 0 0 0 2 0 563

5 0 0 26 0 2 0 0 0 0

0 0 0 0 2 0 0 0 0 0

5 0 0 2 0 563 0 0 0 0

0 26 0 0 0 0 587 0 1 0

0 0 2 0 0 0 0 1 0 1

0 2 0 0 0 0 1 0 1 0

0 0 563 0 0 0 0 1 0 319642


Note that the right-hand side of (3.1) is positive definite, and L(x4

1x
2
2)L(x

2
1x

4
2)−L(x2

1x
2
2)

3 =

1 − 23 = −7. By Lemma 3.4, L extends to L̃ : R[x] → R such that L̃(p2) ≥ 0 for

p ∈ R[x]. Therefore ϕ(f) < 0 for the pseudo-moment evaluation ϕ determined by L̃ (and

any evaluation on x1, x2), so f is neither a quotient of sums of products of elements in

QM(∅, ∅), nor in qm(∅, ∅), by Theorem 3.6.

4. Archimedean Positivstellensatz for moment polynomials

The main result of this section, Theorem 4.2, describes moment polynomials that are
positive subject to constraints on measures with a given compact support. Recall [Mar08,
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Section 5.2] that a quadratic module A in a commutative unital ring A is archimedean if for
every a ∈ A there exists N ∈ N such that N ± a ∈ M . Equivalently, a quadratic module M
in R[x] is archimedean if and only if there is an N ∈ N such that N − x2

1 − · · · − x2
n ∈ M

[Mar08, Corollary 5.2.4].

Lemma 4.1. Let S ⊆ R[x]. If M(S) ⊆ R[x] is archimedean, then qm(S, ∅) ⊆ M and

QM(S, ∅) ⊆ M [x] are archimedean.

Proof. Let (i1, . . . , in) ∈ Nn
0 be arbitrary. Since M(S), there exists N > 0 such that N ±

xi1
1 · · ·xin

n is a convex combination of some p2s for p ∈ R[x] and s ∈ S ∪ {1}. Therefore

N ± mi1,...,in ∈ qm(S, ∅). Therefore qm(S, ∅) and QM(S, ∅) are archimedean by [Mar08,

Proposition 5.2.3]. □

Theorem 4.2 (Archimedean Positivstellensatz). Let S1 ⊆ R[x] and S2 ⊆ M , and suppose

M(S1) is archimedean in R[x]. The following are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) f + ε ∈ QM(S1, S2) for all ε > 0.

The following are equivalent for f ∈ M :

(i’) f ≥ 0 on K(S1, S2);

(ii’) f + ε ∈ qm(S1, S2) for all ε > 0.

Proof. We only prove the first equivalence (the proof of second one is analogous). The

implication (ii)⇒(i) is straightforward. Now suppose (ii) is false. By the Kadison-Dubois

representation theorem [Mar08, Theorem 5.4.4] there exists a homomorphism φ : M [x] → R
such that φ(f) < 0 and φ(QM(S1, S2)) = R≥0. Then X := (φ(x1), . . . , φ(xn)) ∈ K(S1).

Consider the unital functional L : R[x] → R given by L(p) = φ(m(p)). Then L is nonnegative

onM(S1), so by the solution of the moment problem on compact sets [Sch17, Theorem 12.36

(ii)] there is µ ∈ P(K(S1)) such that L(p) =
∫
p dµ for all p ∈ R[x]. By the construction,

µ ∈ K(S1, S2). Therefore (µ,X) ∈ K(S1, S2)×K(S1) and f(µ,X) = φ(f) < 0. □

Remark 4.3. The equivalence (i’)⇔(ii’) in Theorem 4.2 also follows from [KMVW23, The-

orem 5.5] on state polynomials and their evaluations on constrained tuples of bounded

operators and states. Indeed, the class of admissible constraints in [KMVW23, Theorem

5.5] is large enough to allow for commutators, and thus one can consider positivity of state

polynomials on commuting bounded operators subject to archimedean constraints. The

second part of Theorem 4.2 can be then obtained using the spectral theorem for tuples of

commuting bounded operators [Sch12, Theorem 5.23].

However, note that the results of [KMVW23] carry implications only for pure moment

polynomials, but not for general moment polynomials, and are not applicable to the first

part of Theorem 4.2.

Corollary 4.4. Let S1 ⊂ R[x] and S2 ⊂ M , and suppose M(S1) is archimedean in R[x].
If f ∈ M [x] is strictly positive on K(S1, S2)×K(S1), then f ∈ QM(S1, S2).



12 IGOR KLEP, VICTOR MAGRON, AND JURIJ VOLČIČ

Proof. Since K(S1) is compact, the set of Borel probability measures supported on K(S1)

is also compact by [Par05, Theorem II.6.4], and is equal to P(K(S1)) (the existence of all

marginal moments for Borel measures on a compact subset of Rn is automatic). Therefore

K(S1, S2)×K(S1) is compact, so there is ε > 0 such that f − ε ≥ 0 on K(S1, S2)×K(S1).

Then f ∈ QM(S1, S2) by Theorem 4.2. □

Corollary 4.5. Let S1 ⊂ R[x] and S2 ⊂ M , and suppose K(S1) ⊂ Rn is bounded. Then

the following are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) f + ε ∈ QM(S̃1, S2) for all ε > 0, where S̃1 is the set of all square-free products of

elements in S1.

Proof. If K(S1) is bounded, then M(S̃1) is archimedean in R[x] by [Mar08, Corollary 6.1.2].

The rest then follows from Theorem 4.2. □

5. Moment polynomial optimization and examples

Theorem 4.2 can be applied to design a converging hierarchy of semidefinite programs
(SDPs) for moment polynomial optimization. For the sake of simplicity, we first focus on
pure moment polynomial objective functions, and then indicate the necessary changes for
general moment polynomial objective functions.

Let S1 ⊂ R[x] and S2 ⊂ M be finite, and r ∈ N. Recall that qm(S1, S2)2r is the convex
hull of

q21m(p
2s1), q

2
2s2 : si ∈ {1} ∪ Si, p ∈ R[x], qi ∈ M ,

deg s1 + 2(deg q1 + deg p), deg s2 + 2deg q2 ≤ 2r.

Membership in qm(S1, S2)2r is a feasibility linear conic program, but not a semidefinite pro-
gram because of the terms q21m(p

2s1) = m((q1p)
2s1). Thus we consider a larger set q̃m(S1, S2),

which is the convex hull of

m(f 2s1), q
2s2 : si ∈ {1} ∪ Si, f ∈ M [x], q ∈ M ,

deg s1 + 2deg f, deg s2 + 2deg q ≤ 2r.

It is easy to see that membership in q̃m(S1, S2)2r can be certified by an SDP; indeed, its
members can be represented as∑

s∈{1}∪S1

∑
v1,v2

G(s)
v1,v2

· m(v1v2s) +
∑
t∈S2

∑
u1,u2

H(t)
u1,u2

· u1u2t,

where vi are monomials in M [x]r−deg s
2
, ui are monomials in Mr−deg t

2
, and G(s), H(t) are

positive semidefinite matrices of dimensions dimM [x]r−deg s
2

and dimMr−deg t
2
, respectively.

For f ∈ M and r ≥ deg f
2

consider the sequence of SDPs

(5.1) fr = sup{α ∈ R : f − α ∈ q̃m(S1, S2)2r}.

Corollary 5.1. Let S1 ⊆ R[x], S2 ⊆ M , f ∈ M , and suppose M(S1) is archimedean

in R[x]. Then the sequence {fr}r≥deg f
2

arising from the SDP hierarchy (5.1) converges

monotonically to f∗ := infµ∈K(S1,S2) f(µ) from below.
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Proof. The sequence {fr}r is increasing since q̃m(S1, S2)2r ⊂ q̃m(S1, S2)2(r+1). Also, fr ≤ f∗
by the definition of q̃m(S1, S2)2r. Let ε > 0 be arbitrary. By Theorem 4.2 there exists r ∈ N
such that

f − f∗ + ε ∈ qm(S1, S2)2r ⊆ q̃m(S1, S2)2r.

Therefore limr→∞ fr = f∗. □

Corollary 5.1 is also a specialization of [KMVW23, Corollary 6.1] from the state poly-
nomial setup. Let us note a few further consequences of [KMVW23, Section 6] without
proofs:

(1) If N − x2
1 − · · · − x2

n for some N > 0 is a conic combination of S1 ∪ {ℓ2 : ℓ ∈ R[x]1},
then there is no duality gap between SDP (5.1) and its dual,

fr = inf {L(f) : L ∈ M ∨
2r, L(1) = 1, L(q̃m(S1, S2)2r) = R≥0} .

(2) If the solution of the dual of (5.1) certain rank conditions, then the SDP hierarchy
(5.1) stops, and one can extract a concrete finitely supported optimizer for f∗.

(3) While the sizes of SDPs (5.1) and their duals grow quickly in concrete applications,
one can mitigate this by employing sparsity [MW23] and symmetry reductions.

To apply semidefinite programming to optimization of general moment polynomials, one

needs to replace QM(S1, S2)2r with a larger cone Q̃M(S1, S2)2r. Similarly as in the case of
qm(S1, S2)2r, the problematic elements in QM(S1, S2)2r are conic combinations of f 2m(p2s)
for s ∈ S1 ∪ {1}, p ∈ R[x] and f ∈ M [x] with deg s + 2(deg p + deg f) ≤ 2r. To obtain

Q̃M(S1, S2)2r, we replace them by∑
(u1,v1),(u2,v2)

G(u1,v1),(u2,v2) · m(u1u2s)v1v2,

where (ui, vi) are pairs of monomials ui ∈ R[x] and vi ∈ M [x] with deg s+2(deg ui+deg vi) ≤
2r, and G is a positive semidefinite matrix of dimension

∑
i+j≤r−deg s

2
(dimR[x]i+dimM [x]j).

Given f ∈ M [x], the optimization problems

(5.2) fr = sup{α : f − α ∈ Q̃M(S1, S2)2r}
are then SDPs, and the following analog of Corollary 5.1 holds.

Corollary 5.2. Let S1 ⊆ R[x], S2 ⊆ M , f ∈ M [x], and suppose M(S1) is archimedean

in R[x]. Then the sequence {fr}r≥deg f
2

arising from the SDP hierarchy (5.2) converges

monotonically to f∗ := inf(µ,X)∈K(S1,S2)×K(S1) f(µ,X) from below.

Next, we demonstrate the above SDP hierarchy method on two optimization problems
arising from nonlinear Bell inequalities in quantum physics. Section 5.1 confirms a covari-
ance Bell inequality proposed in [PHBB17], and Section 5.1 rectifies a bilocal Bell inequality
proposed in [TGB21].

5.1. Covariance Bell inequality. Let Xj, Yj for j = 1, 2, 3 be binary random variables
(valued in {−1, 1}) on some probability space (P ,Σ, π), and consider the expression

cov3322(X, Y ) := cov(X1, Y1) + cov(X1, Y2) + cov(X1, Y3)

+ cov(X2, Y1) + cov(X2, Y2)− cov(X2, Y3)
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+cov(X3, Y1)− cov(X3, Y2)

where cov(X, Y ) =
∫
XY dπ −

∫
X dπ ·

∫
Y dπ. In [PHBB17], the authors ask what is the

largest possible value of cov3322. They provide concrete examples of probability spaces (on
a three-element set) and binary random variables where cov3322 attains the value 4.5. In the
quest for proving that cov3322 ≤ 4.5 for all binary random variables, they propose a reduction
to solving a certain number of linear systems. Nonetheless, for establishing this particular
inequality, they estimate that more than 1014 linear systems would have to be solved, thus
rendering this particular approach infeasible. As an alternative, they suggest maximizing
cov3322 via classical polynomial optimization similarly as in Remark 2.6. However, the
corresponding polynomial problem has too many variables for global optimization tools to
apply. Thus they use numerical nonlinear optimization to look for local maxima of cov3322
from numerous starting points, which lends confidence to their conjecture that cov3322 ≤ 4.5.

Let

f =m100100 − m100000 m000100 + m100010 − m100000 m000010 + m100001 − m100000 m000001

+m010100 − m010000 m000100 + m010010 − m010000 m000010 − m010001 + m010000 m000001

+m001100 − m001000 m000100 − m001010 + m001000 m000010.

The question of [PHBB17] is equivalent to the moment polynomial optimization problem

f∗ = sup f subject to x2
j = 1 for j = 1, . . . , 6.

By Corollary 5.1 we have fr ↘ f∗ for

fr = inf{α : α− f ∈ q̃m(S, ∅)}

and S = {±(1−x2
j) : j = 1, . . . , 6}. When constructing SDPs for fr, we encode the relations

of S as substitution rules, to reduce the size of the SDPs. For r = 2, the resulting SDP has
4146 indeterminates and the semidefinite constraint of size 100× 100, and yields f2 = 4.5.
Therefore we have f∗ = 4.5.

5.2. Bilocal Bell inequality. In [TGB21, TPKLR22], the authors ask about the largest
value of

(5.3)
1

3

∑
i∈{1,2,3}

(
E(BiCi)− E(AiBi)

)
−

∑
{i,j,k}={1,2,3}

E(AiBjCk)

where Ai, Bi, Ci for i = 1, 2, 3 are binary random variables on a probability space (P ,Σ, π)
satisfying bilocality constraints

(5.4) E(Ak1
1 Ak2

2 Ak3
3 Ck4

1 Ck5
2 Ck6

3 ) = E(Ak1
1 Ak2

2 Ak3
3 )E(Ck4

1 Ck5
2 Ck6

3 )

for all ki ∈ {0, 1}, and additional vanishing constraints

E(Ai) = E(Bi) = E(Ci) = 0 for i ∈ {1, 2, 3},
E(AiBj) = E(BiCj) = 0 for i ̸= j,

E(AiBjCk) = 0 for |{i, j, k}| ≤ 2.

(5.5)

Here, E(X) =
∫
X dπ. In [TGB21] it is shown that the largest value of (5.3) for bilocal

models with the tetrahedral symmetry is 3. Furthermore, [TGB21, TPKLR22] suggest that
(5.3) can be at most 3 in general, and support this claim with numerical methods that
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search for local maxima. However, as shown below, this claim is false; the largest value of
(5.3) subject to (5.4) and (5.5) is 4.

Consider the moment polynomial optimization problem

sup
1

3

∑
i∈{1,2,3}

(
m(xi+3xi+6)− m(xixi+3)

)
−

∑
{i,j,k}={1,2,3}

m(xixj+3xk+6)

subject to

m(xk1
1 xk2

2 xk3
3 xk4

7 xk5
8 xk6

9 ) = m(xk1
1 xk2

2 xk3
3 )m(xk4

7 xk5
8 xk6

9 ) for ki ∈ {0, 1},
x2
j = 1 and m(xj) = 0 for j ∈ {0, . . . , 9},

m(xixj+3) = m(xi+3xj+6) = 0 for i, j ∈ {1, 2, 3}, i ̸= j,

m(xixj+3xk+6) = 0 for i, j, k ∈ {1, 2, 3}, |{i, j, k}| ≤ 2.

(5.6)

Corollary 5.1 provides a converging sequence of upper bounds for the solution of (5.6). For
r = 3, one obtains the upper bound 4 by solving an SDP with 31017 indeterminates and
the semidefinite constraint of size 263, or more practically, by solving its dual with 4549
indeterminates and the semidefinite constraint of size 325. Therefore (5.3) subject to (5.4)
and (5.5) is at most 4. Next, we show that the value 4 is indeed attained. Denote

η0 = (1 1 1 1), η1 = (1 1 -1 -1), η2 = (1 -1 1 -1), η3 = (1 -1 -1 1),

and let ei ∈ R4 be the ith standard unit vector. Endow {1, 2, 3, 4}2 with the uniform
probability distribution, and consider the following binary random variables on it:

Ai = η0 ⊗ ηi, Bi =

(
η0 ⊗ η0 − 2

4∑
k=1

ek ⊗ ek

)
· ηi ⊗ η0, Ci = ηi ⊗ η0,

for i ∈ {1, 2, 3}. Here, we identified the algebra of random variables on {1, 2, 3, 4}2 with
R4 ⊗ R4. The bilocality constraints (5.4) are satisfied because of the tensor structure of
Ai, Ci (and the uniform distribution on a product is the product of uniform distributions),
and the vanishing constraints (5.5) follow by direct calculation. Finally, (5.3) evaluates to
4 for this ensemble of binary random variables.

6. Lasserre’s Störungspositivstellensatz for moment polynomials

In this section we show that moment polynomials nonnegative on K(S1, S2)×K(S1) be-
long to the quadratic module QM(S1, S2) up to an arbitrarily small perturbation of their
coefficients (Theorem 6.7). This is achieved through the analysis of a sequence of conic
optimization problems and their duals, and the resolution of an infinite-dimensional mo-
ment problem. Finally, a corollary for polynomial positivity on semialgebraic sets is given
(Corollary 6.13).

For r ∈ N let

Ωr =
n∑

j=1

r∑
k=0

x2k
j

k!
.

If X ∈ Rn, then n ≤ Ωr(X) ≤
∑n

j=1 exp(X
2
j ) is uniformly bounded for all r ∈ N. Similarly,

if ν ∈ P(Rn) is finitely supported, i.e., ν =
∑ℓ

i=1 αiδXi
is a convex combination of the Dirac
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delta measures δXi
concentrated at X i ∈ Rn, then

n ≤ m(Ωr)(ν) ≤
ℓ∑

i=1

αi

n∑
j=1

exp(X2
ij)

is uniformly bounded for all r ∈ N.
To S1 ⊆ R[x], S2 ⊆ M and f ∈ M [x] we assign a pair of optimization problems for every

r ≥ deg f
2

and M > 0:

(6.1) Qr,M :

{
sup
z∈R

z

s.t. f − z ∈ QM(S1, S2)2r + R≥0

(
M − Ωr − m(Ωr)

)
;

(6.2) Q∨
r,M :


inf

L∈M [x]∨2r

L(f)

s.t. L(1) = 1 ,

L
(
M − Ωr − m(Ωr)

)
≥ 0 ,

L(g) ≥ 0 for all g ∈ QM(S1, S2)2r .

In the following two lemmas and their proofs we abbreviate Cr,M = QM(S1, S2)2r +
R≥0(M − Ωr − m(Ωr)).

Lemma 6.1. For all r ∈ N and M > 0, the closure of the cone M [x]r ∩ C2r,M in M [x]r is

contained in

(6.3) {g ∈ M [x]r : g + ε ∈ C2r,M for all ε > 0} .

Proof. Let us fix r ∈ N, M > 0 and let us endow the finite-dimensional space M [x]r with

some norm ∥ · ∥. The identities ±2uv = (u ± v)2 − u2 − v2 and ±2m(uv) = m((u ± v)2) −
m(u2)− m(v2) for u, v ∈ M [x] imply that there exists A > 0 (dependent on r and M) such

that

g + A∥g∥ ∈ QM(∅, ∅)2r + R≥0

(
M − Ω2r−1 − m(Ω2r−1)

)
for all g ∈ M [x]r. Define F : M [x]r → [−∞,∞] as

F (g) = sup {z ∈ R : g − z ∈ C2r,M} .

This function satisfies the following properties:

(i) F (g) ≥ −A∥g∥ for all g ∈ M [x]r;

(ii) F (g1 + g2) ≥ F (g1) + F (g2) for all gi ∈ M [x]r;

(iii) F (g) ≥ 0 if and only if g belongs to (6.3).

Now suppose (gi)i is a sequence in M [x]r ∩ C2r,M that converges to g ∈ M [x]r. Then

F (g) ≥ F (gi) + F (g − gi) ≥ −A∥g − gi∥

for all i, and so F (g) ≥ 0. Therefore g belongs to (6.3). □

Remark 6.2. Note that Cr,M is not closed in general. Indeed, following [PS01, Remark 2.8]

let S1 = {−x2
1}; then x1 + ε ∈ QM(S1, ∅) = C1,1 for all ε > 0 but x1 /∈ C1,1.
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Lemma 6.3. For all r and M , the optimization problem (6.1) is a linear conic problem,

and (6.2) is its dual. Sequences (supQr,M)r and (inf Q∨
r,M)r are increasing. If S2 is finite,

K(S1, S2) ̸= ∅ and M is large enough, then

(6.4) lim
r→∞

supQr,M = lim
r→∞

inf Q∨
r,M .

Proof. The first part of the claim follows by inspection. The sequence (supQr,M)r is in-

creasing since Cr,M ⊆ Cr+1,M . If L is feasible for Q∨
r,M , then its restriction is feasible

for Q∨
r′,M for r′ < r; hence the sequence (inf Q∨

r,M)r≥d is increasing. By weak duality

[Bar02, Theorem IV.6.2] we have supQr,M ≤ inf Q∨
r,M . By Proposition 2.5 there exists

(ν,X) ∈ K(S1, S2)×K(S1) with a finitely supported ν. Let M ≥ supr(Ωr(X) + m(Ωr)(ν))

(note that the right hand side is finite). Then L ∈ M [x]∨2r defined by L(p) = p(ν,X) is

clearly feasible for (6.2), whence inf Q∨
r,M < ∞ for all r ≥ deg f

2
. Note that L(f−inf Q∨

r,M) ≥ 0

for all L ∈ C∨
r,M . This implies that f−inf Q∨

r,M is in C∨∨
r,M , which is the closure of Cr,M . There-

fore f − inf Q∨
r,M + ε ∈ C2r,M for all ε > 0 by Lemma 6.1, so inf Q∨

r,M ≤ supQ2r,M . Thus

(6.4) follows from supQr,M ≤ inf Q∨
r,M ≤ supQ2r,M . □

The following proposition resolves the unbounded moment problem for positive function-
als on moment polynomials (cf. [IKR14, AJK15] for related infinite-dimensional moment
problems), in the spirit of Nussbaum’s theorem [Sch17, Theorem 14.25] on functionals sat-
isfying the multivariate Carleman condition.

Proposition 6.4. Let S1 ⊆ R[x], S2 ⊆ M , f ∈ M [x] and M ∈ R>0. Suppose L ∈ M [x]∨

satisfies

(a) L(1) = 1,

(b) L(QM(S1, S2)) = R≥0,

(c) |L(w)| ≤ (degw)!Mdegw for all monomials w ∈ M [x].

Then there exists (µ,X) ∈ K(S1, S2)×K(S1) such that L(f) = f(µ,X).

Proof. Denote α = L(f), and endow M [x] with the finest locally convex topology. Let

C be the set of all L′ ∈ M [x]∨ that satisfy (a), (b), (c) and L′(f) = α. Then C is a

nonempty convex set, and Tychonoff’s theorem [Wil70, Theorem 17.8] implies that C is

weak-* compact in M [x]∨. By the Krein-Milman theorem [Bar02, Theorem III.4.1] we may

therefore assume that the functional L is an extreme point of C.
On M [x] we define a semi-inner product ⟨p, q⟩ = L(pq). LetN = {p ∈ M [x] : L(p2) = 0}.

By the Cauchy-Schwarz inequality for semi-inner products, N is an ideal of M [x]. Let H
be the completion of the inner product space M [x]/N . Multiplication with generators xj

and mi1,...,in in M [x] induces symmetric unbounded operators Xj and Yi1,...,in on H with a

dense domain M [x]/N . Moreover, the elements of M [x]/N are analytic vectors for Xj and

Yi1,...,in according to [Sch12, Definition 7.1] by (c). By [Sch12, Theorem 7.18], the closures

Xj and Yi1,...,in are strongly commuting self-adjoint operators. Since real polynomials in

strongly commuting self-adjoint operators are again self-adjoint,

φ(xj) = Xj, φ(mi1,...,in) = Yi1,...,in
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defines an integrable representation φ of M [x] on H according to [Sch90, Definition 9.1.1].

Note that φ admits a cyclic unit vector 1 ∈ M [x]/N , and L(p) = ⟨φ(p)1, 1⟩.
Let P ∈ B(H) be a projection that strongly commutes with φ(M [x]). Suppose P /∈ {0, I}.

Therefore P1 ̸= 0 and (I − P )1 ̸= 0 since 1 is a cyclic vector for φ. Consider the following

L1, L2 ∈ M [x]∨:

L1(p) =
⟨φ(p)P1, P1⟩

∥P1∥2
, L2(p) =

⟨φ(p)(I − P )1, (I − P )1⟩
∥(I − P )1∥2

.

Then L1, L2 ∈ C and L is a convex combination of L1 and L2. By the extremal property of

L it follows L = L1 = L2. Then

⟨φ(p)1, 1⟩ = ⟨φ(p)P1, P1⟩
∥P1∥2

=

〈
φ(p)1,

1

∥P1∥2
P1

〉
for every p ∈ M [x] implies 1 = 1

∥P1∥2P1 because 1 is a cyclic vector. Therefore P1 = 1

because P is a projection, which contradicts (I − P )1 ̸= 0.

Hence there are no nontrivial projections in the strong commutant of φ(M [x]). Therefore

φ is irreducible by the unbounded analog of von Neumann’s theorem [Sch90, Lemma 8.3.5],

and H is one-dimensional by the unbounded analog of Schur’s lemma [Sch90, Corollary

9.1.11]. Therefore φ is a homomorphism from M [x] to R. In particular, L(p) = ⟨φ(p)1, 1⟩ =
φ(p) for all p ∈ M [x]. Consider the functional L̃ : R[x] → R given by L̃(p) = L(m(p)); note

that L̃(M(S1)) = R≥0 by (b), and L̃ satisfies the Carleman condition |L̃(xk
j )| ≤ k!Mk for all

j = 1, . . . , n and k ∈ N. By a refined version of Nussbaum’s theorem [Sch17, Theorem 14.25]

applied to L̃, there is µ ∈ K(S1, S2) such that L(mi1,...,in) = L̃(xi1
1 · · · xin

n ) =
∫
xi1
1 · · ·xin

n dµ

for all (i1, . . . , in) ∈ Nn
0 . Let X = (φ(x1), . . . , φ(xn)); then (b) implies X ∈ K(S1). Lastly,

L(f) = f(µ,X). □

Lemma 6.5. Let r ∈ N and M ≥ 1. Suppose L ∈ M [x]∨2r satisfies L(QM(∅, ∅)2r) = R≥0

and

(6.5) L
(
x2k
j

)
, L
(
m(x2k

j )
)
≤ k!M

for j = 1, . . . , n and k = 1, . . . , r. Then

(6.6) |L(w)| ≤
√

(degw)!M

for all monomials w in M [x]r.

Proof. By applying [Las06, Lemma 6.2] to the moment matrix (L(m(αβ)))α,β indexed by

xi1
1 · · ·xin

n for i1 + · · ·+ in ≤ k, one obtains

(6.7) L(m2i1,...,2in) ≤ (i1 + · · ·+ in)!M

for i1 + · · ·+ in ≤ r. Next,

(6.8) L(m2ki1,...,in) ≤ L(m2ki1,...,2kin)
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for k(i1+ · · ·+in) ≤ r. Indeed, m2k−m2k1 ∈ qm(∅, ∅) by Lemma 2.2, and after applying the m-

intertwining homomorphism x1 7→ xi1
1 · · · xin

1 to it, we obtain m2ki1,...,2kin −m2ki1,...,in ∈ qm(∅, ∅),
which then implies (6.8). By (6.7), (6.8) and [Las06, Lemma 6.2],

(6.9) L(w2) ≤ (degw)!M

for all monomials w ∈ M [x]r. Finally, (6.6) follows from L(w2)−L(w)2 = L((w−L(w))2) ≥
0 for degw ≤ r. □

Lemma 6.6. Suppose S2 is finite, K(S1, S2) ̸= ∅ and f ∈ M [x] is bounded below on

K(S1, S2) × K(S1); denote f∗ := inf(µ,X)∈K(S1,S2)×K(S2) f(µ,X) > −∞. For large enough

M > 0, (6.2) is feasible for 2r ≥ deg f , and inf Q∨
r,M ↗ fM as r → ∞ for some fM ≥ f∗.

Proof. Feasibility of (6.1) follow by the same argument as in the proof of Lemma 6.3. Let L

be feasible for Q∨
r,M . Observe that for k ≤ r, the values of L(x2k

j ) and L(m(x2k
j )) are bounded

by k!M . Let d ∈ N; for r ≥ d, Lemma 6.5 implies

(6.10) |L(w)| ≤
√
d!M =: cd

for all monomials w in M [x]d. In particular, L(f) is uniformly bounded for large enough r.

Hence (inf Q∨
r,M)r is an increasing function bounded from above, whence inf Q∨

r,M ↗ fM as

r → ∞, for some fM . It remains to show fM ≥ f∗.

Let ℓ∞ be the space of bounded functions on monomials in M [x]. For every r ∈ N let

L(r) be an optimizer of (6.1), and let sr ∈ ℓ∞ be given as sr(w) =
1

cdegw
L(w) for monomials

w with degw ≤ 2r, and sr(w) = 0 for all other monomials w. Note that for every monomial

w, sr(w) is bounded by 1 for all sufficiently large r. By the Banach-Alaoglu theorem [Bar02,

Theorem III.2.9], (sr)r has an accumulation point ℓ∞ with respect to the weak-* topology.

Hence there is s ∈ ℓ∞ and a subsequence (srk)k converging to s. Define

L : M [x] → R, L(w) = cdegw · s(w).

Then L(rk)|M [x]d → L|M [x]d as k → ∞, for every d ∈ N. In particular, L is a unital linear

functional, L(f) = fM , and L(QM(S1, S2)) = R≥0.

Let d ∈ N be arbitrary. Then for every rk ≥ d,

|L(rk)(w)| ≤
√
d!M

for all monomials w ∈ M [x]d by (6.10). Consequently

|L(w)| ≤
√
(degw)!M

for all monomials w ∈ M [x]. Therefore L(f) ≥ f∗ by Proposition 6.4. □

Theorem 6.7 (Störungspositivstellensatz). Let S1 ⊆ R[x] and S2 ⊆ M , and suppose S2 is

finite. The following are equivalent for f ∈ M [x]:

(i) f ≥ 0 on K(S1, S2)×K(S1);

(ii) for every ε > 0 there exists r ∈ N such that f + ε(Ωr + m(Ωr)) ∈ QM(S1, S2).

The following are equivalent for f ∈ M :
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(i’) f ≥ 0 on K(S1, S2);

(ii’) for every ε > 0 there exists r ∈ N such that f + εm(Ωr) ∈ qm(S1, S2).

Proof. (ii)⇒(i) Let X ∈ K(S1) be arbitrary, and let ν be a finitely supported measure in

K(S1, S2). There is 0 < M < ∞ such that

Ωr(X) + m(Ωr)(ν) ≤ M

for all r ∈ N. Then for every ε > 0 one has f(ν,X) ≥ −εM , and so f(ν,X) ≥ 0. Since X

and ν were arbitrary, and finitely supported measures in K(S1, S2) interpolate any measure

inK(S1, S2) up to moments of any fixed order by Proposition 2.5, it follows that f(µ,X) ≥ 0

for all (µ,X) ∈ K(S1, S2)×K(S1).

(i)⇒(ii) We divide the proof into two main cases (a) and (b), according to whether

K(S1, S2) is empty or not.

Case (a): assume K(S1, S2) ̸= ∅ and denote f∗ = inf(µ,X)∈K(S1,S2)×K(S1) f(µ,X). We

further divide this case in two sub-cases.

First suppose f∗ > 0. By Proposition 2.5 there exists (ν,X) ∈ K(S1, S2)×K(S1), with a

finitely supported ν. DenoteM0 := supr(Ωr(X)+m(Ωr)(ν)) < ∞, and letM > max{ 1
f∗
,M0}

be arbitrary. By Lemmas 6.3 and 6.6 there exists rM > 0 such that supQrM ,M > f∗ − 1
M
.

That is, there are zM ≥ f∗ − 1
M
, λM ≥ 0 and qM ∈ QM(S1, S2)2rM such that

(6.11) f − zM = qM + λM

(
M − ΩrM − m(ΩrM )

)
.

Evaluating (6.11) at (ν,X) ∈ K(S1, S2)×K(S1) gives

f(ν,X)− f∗ +
1

M
≥ f(ν,X)− zM

= qM(ν,X) + λM

(
M − ΩrM (X)− m(ΩrM )(ν)

)
≥ λM(M −M0),

and therefore

(6.12) λM ≤
f(ν,X)− f∗ +

1
M

M −M0

.

The right-hand side of (6.12) goes to 0 as M → ∞. By (6.11),

f + λM

(
ΩrM + m(ΩrM )

)
= zM + qM + λMM ∈ QM(S1, S2)2rM ,

and λM → 0 as M → ∞. Therefore (ii) holds.

Now suppose f∗ = 0, and let ε > 0 be arbitrary. By applying (i)⇒(ii) to f + nε and
ε
2
> 0, there exists r ∈ N such that (f +nε)+ ε

2
(Ωr + m(Ωr)) ∈ QM(S1, S2)2r. But the latter

equals f + ε(Ωr + m(Ωr))− ε
2
(Ωr − n+ m(Ωr)− n), so f + ε(Ωr + m(Ωr)) ∈ QM(S1, S2)2r.

Case (b): assume K(S1, S2) = ∅, and let f ∈ R[x] and ε > 0 be arbitrary. Let xn+1

be an auxiliary variable, and consider S ′
1 = xn+1 · ({1} ∪ S1) ⊂ R[x1, . . . , xn+1] and S ′

2 =

m21,0,...,0 · S2 ⊂ M . Then K(S ′
1) contains Rn × {0}, K(S ′

1, S
′
2) contains all µ ∈ P(Rn × {0})
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such that
∫
x1 dµ = 0 (and is thus nonempty), and xn+1f ≥ 0 on K(S ′

1, S
′
2). By the case

(a) of the proof above, there exists r ∈ N such that

(6.13) xn+1f +
ε

n+ 2e

(
Ωr + m(Ωr) +

r∑
k=0

1

k!

(
x2k
n+1 + m(x2k

n+1)
))

∈ QM(S ′
1, S

′
2).

Consider the homomorphism ξ, from moment polynomials generated by x1, . . . , xn+1 to

moment polynomials generated by x1, . . . , xn, that is determined by

ξ(xj) = xj for j ≤ n, ξ(xn+1) = 1, ξ(mi1,...,in+1) = mi1,...,in .

Note that ξ intertwines with m. Applying ξ to (6.13) thus gives

f +
ε

n+ 2e

(
Ωr + m(Ωr) +

r∑
k=0

2

k!

)
∈ QM(S1, S

′
2) ⊆ QM(S1, S2),

and therefore f + εΩr ∈ QM(S1, S2).

(i’)⇔(i’) The proof is analogous to (i)⇔(ii), and utilizes the straightforward counterparts

of Lemmas 6.3, 6.5, 6.6 and Proposition 6.4 for qm(S1, S2). □

Remark 6.8. In Theorem 6.7, one can replace qm(S1, S2) and QM(S1, S2) with larger cones

q̃m(S1, S2) and Q̃M(S1, S2) from Section 5, respectively. While the resulting statement

is slightly weaker than Theorem 6.7, it has an advantage that checking membership in

q̃m(S1, S2) or Q̃M(S1, S2) can be done via SDP.

Remark 6.9. As it is evident from the proof of Theorem 6.7, the sequence of polynomials

Ωr can be replaced by

(6.14)
n∑

j=1

r∑
k=0

x2k
j

ck
for r ∈ N,

where ck > 0 are such that (ck)k has super-exponential growth (to ensure point-wise con-

vergence of (6.14), which is used for (ii)⇒(i) of Theorem 6.7 and for feasibility of (6.1) and

(6.2)) and (k−kck)k has at most exponential growth (which is needed for applying Proposi-

tion 6.4).

Example 6.10. The implications (ii)⇒(i) and (ii’)⇒(i’) of Theorem 6.7 fail in general when

S2 is not finite. Let n = 1, f = −1 and

S2 = {m2i − (4i+ 1)! : i ∈ N}.

Since the 2ith moment of µ = e−
√

|t| dt is (4i+ 1)!, we have K(∅, S2) ̸= ∅ and therefore (i’)

and (i) are false. Now let ε > 0 be arbitrary; then there exists r ∈ N such that r! ≤ ε(4r+1)!,

and so

−1 + εm(Ωr) =
ε

r!

(
m2r −

r!

ε

)
+ εm(Ωr−1) ∈ qm(∅, S2).

Thus (ii) and (ii’) are true.
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Example 6.11. Let f = m2,0m0,2. Since f is a product of two elements in qm(∅, ∅), it is

nonnegative on P(R2); on the other hand, f does not belong to qm(∅, ∅). For a fixed r ∈ N,
searching for the smallest ε(r) > 0 such that f + ε(r)m(Ωr) ∈ q̃m(∅, ∅) can be formulated as

an SDP. For small values of r one obtains ε(2) = 0.5, ε(3) = 0.10447, ε(4) = 0.02202.

Example 6.12. Let f = m1,2m2,1−m31,1 [BRS
+22, Example 1.1]. By the results of [BRS+22],

f is nonnegative on P(R2
≥0), but ϕ(f) < 0 for some homomorphism ϕ : M → R such that

ϕ(qm({x1, x2}, ∅)) = R≥0 (that is, the inequality f ≥ 0 is not valid for all pseudo-moments

on the nonnegative orthant). Nevertheless, for every ε > 0, Theorem 6.7 guarantees an

r ∈ N such that f + εm(Ωr) ∈ qm({x1, x2}, ∅). Alternatively, since f is homogeneous with

respect to the degree on M , its nonnegativity on P(R2
≥0) is equivalent to nonnegativity on

P([0, 1]2). By Theorem 4.2, f + ε ∈ qm({x1, 1− x1, x2, 1− x2}, ∅) for every ε > 0.

6.1. Polynomial positivity on arbitrary semialgebraic sets. Theorem 6.7 also carries
implications for (classical, non-moment) polynomials.

Corollary 6.13. Let S ⊆ R[x]. Then the following are equivalent for f ∈ R[x]:
(i) f ≥ 0 on K(S);

(ii) for every ε > 0 there exists r ∈ N such that f + εΩr ∈ M(S).

Proof. The homomorphism ζ : M [x] → R[x] determined by ζ|R[x] = idR[x] and ζ(mi1,...,in) = 0

(for ij not all zero) maps QM(S, ∅) into M(S). Applying ζ to the conclusions of Theorem

4.2 for f and QM(S, ∅) gives the desired statement. □

Remark 6.14. Corollary 6.13 is a strengthening of [LN07, Corollary 3.7]; the latter assumes

that S is finite and has the strong moment property, the interior of K(S) is nonempty, and

requires preorderings instead of quadratic modules.

Corollary 6.13 thus characterizes polynomial positivity on arbitrary basic closed semial-

gebraic sets, but differently from the renowned Krivine-Stengle Positivstellensatz [Mar08,

Theorem 2.2.1]; while the latter certificate involves preorderings and denominators, the

former involves quadratic modules and coefficient perturbations.

Example 6.15. Let us record one of the simplest cases to which [LN07, Corollary 3.7] does

not apply. Clearly, x1x2 ≥ 0 on K({x1, x2}). By Corollary 6.13, for every ε > 0 there exists

r ∈ N such that x1x2 + εΩr ∈ M({x1, x2}).
For a fixed r ∈ N, one can find the smallest ε(r) > 0 such that f + ε(r)m(Ωr) ∈ q̃m(∅, ∅)

by solving an SDP. For r = 2, . . . , 8 the values of ε(r) are

0.5, 0.012428, 0.002016, 0.000580, 0.000238, 0.000117, 0.000065, 0.000032.

Example 6.16. Remark 6.9 shows that Corollary 6.13 allows one for certain modifications

of polynomials Ωr. One might contemplate whether only the constant term and the leading

terms are essential; this is indeed true in certain cases [KSV22, Example 7.9]. However, the

following example shows this is not true in general.
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Let n = 1, f = −2 and S = {−1 +
x2k
1

k!−1
: k ≥ 2}. Then K(S) = ∅ and f ≥ 0 on K(S).

We claim that −2 + (1 +
x2r
1

r!
) /∈ M(S) for every r ∈ N. Indeed, suppose

(6.15) −1 +
x2r
1

r!
= σ1 +

ℓ∑
k=2

σk ·
(
−1 +

x2k
1

k!− 1

)
where ℓ ≥ 2 and σk ∈ R[x] are sums of squares. Note that ℓ ≤ r. Let X = 2ℓ

√
ℓ!− 1.

Then the right-hand side of (6.15) is nonnegative at X, while the left-hand side of (6.15) is

negative at X, a contradiction.

On the other hand, if ε > 0 is arbitrary and r ≥ 2
ε
− 1, then

−1 + εΩr =

(
−1 + ε

(
1 +

r∑
k=2

k!− 1

k!

))
+ εx2

1 + ε

r∑
k=2

k!− 1

k!

(
−1 +

x2k
1

k!− 1

)
∈ M(S),

as anticipated by Corollary 6.13.

We conclude the section with a modified Lasserre’s SDP hierarchy, applicable to arbitrary
semialgebraic sets. Let S ⊆ R[x], f ∈ R[x] and ε > 0. Let f∗ = infX∈K(S) f(X). For

r ≥ deg f
2

consider the SDP

f (ε)
r = sup {z ∈ R : f − z + εΩr ∈ M(S)2r} .

Corollary 6.17. Let S, f, ε be as above. Then (f
(ε)
r )r is an increasing sequence, and

(6.16) f∗ ≤ lim
r→∞

f (ε)
r ≤ inf

X∈K(S)

(
f(X) + ε(exp(X2

1 ) + · · ·+ exp(X2
n)
)
.

In particular,

(6.17) lim
ε↓0

lim
r→∞

f (ε)
r = f∗.

Proof. The first inequality in (6.16) holds by Corollary 6.13, and the second inequality in

(6.16) is straightforward. Lastly, (6.17) follows from limε↓0 infK(f + εg) = infK f for any

nonnegative function g on Rn. □
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[BBLM05] Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi, and Pascal Massart. Moment inequali-

ties for functions of independent random variables. The Annals of Probability, 33(2):514 – 560,

2005. 1

[BKP16] Sabine Burgdorf, Igor Klep, and Janez Povh. Optimization of polynomials in non-commuting

variables. SpringerBriefs in Mathematics. Springer, 2016. 2



24 IGOR KLEP, VICTOR MAGRON, AND JURIJ VOLČIČ
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