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Abstract. Hunter proved that the complete homogeneous symmetric poly-

nomials of even degree are positive definite. We prove a noncommutative

generalization of this result, in which the scalar variables are replaced with

hermitian operators. We provide a sharp lower bound and a sum of hermitian

squares representation that are novel even in the scalar case.

1. Introduction

The complete homogeneous symmetric (CHS) polynomial of degree d in n (com-

muting) variables is the sum

hd(x1, x2, . . . , xn) :=
∑

1≤i1≤···≤id≤n

xi1xi2 · · ·xid ,

of all
(
n+d−1

d

)
monomials of degree d in x1, x2, . . . , xn [Sta99, Sec. 7.5]. For example,

h2(x1, x2) = x2
1+x1x2+x2

2 and h4(x1, x2) = x4
1+x3

1x2+x2
1x

2
2+x1x

3
2+x4

2. Hunter

proved that CHS polynomials of even degree are nonnegative; more precisely, for

d ∈ N and x = (x1, x2, . . . , xn) we have

h2d(x1, x2, . . . , xn) ≥
∥x∥2d2
2dd!

, (1)

with equality at x ̸= 0 if and only if d = 2 and x1 + x2 + · · ·+ xn = 0 [Hun77].

Even-degree CHS polynomials give rise to prominent instances of symmetric

polynomial inequalities, studied in algebraic combinatorics and real algebraic ge-

ometry [Pro78, Tim03, CGS11, BR21]. In this paper, we explore a noncommutative

analogue of CHS polynomial positivity. This is done from the perspective of free real

algebraic geometry [dOHMP09, HKM13], which investigates polynomial inequali-

ties in several matrix or operator variables without dimension restrictions. We

define noncommutative CHS polynomials and prove an explicit Hunter-like lower

bound for them. Our approach yields a noncommutative sum of hermitian squares

(SOHS) representation that appears novel even in the commutative case. The non-

commutative generalization of Hunter’s theorem sheds new light on the classical

case: we obtain better lower bounds than Hunter’s in many situations while also

providing sum of squares (SOS) representations for the classical CHS polynomials.
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To state our results, we require some notation. For n ∈ N, let [x1, . . . , xn] de-

note the set of monomials in n commuting variables and let R[x1, . . . , xn] denote

the corresponding real polynomial ring. Let <x1, . . . , xn> denote the set of all

words in n freely noncommuting variables and let R<x1, . . . , xn> denote the corre-

sponding real free ∗-algebra of noncommutative polynomials, where the involution

∗ is determined by x∗
j = xj for all j = 1, 2, . . . , n.

Let α : <x1, . . . , xn> → [x1, . . . , xn] denote abelianization, which maps a non-

commutative word to a monomial by forgetting the order. For example, α(x1x2x1) =

x2
1x2. A counting argument shows that∣∣α−1(xk1

1 · · ·xkn
n )

∣∣ = (
k1 + · · ·+ kn
k1, . . . , kn

)
. (2)

The map α extends to a natural algebra homomorphism π : R<x1, . . . , xn> →
R[x1, . . . , xn]. Let σ : R[x1, . . . , xn] → R<x1, . . . , xn> denote the linear map

σ(m) :=
1

|α−1(m)|
∑

w∈α−1(m)

w, m ∈ [x1, . . . , xn].

For example, σ(x1x2) =
1
2 (x1x2+x2x1). One may view σ as the fully symmetrized

noncommutative lift. Note that π ◦ σ = idR[x1,...,xn].

The noncommutative complete homogeneous symmetric (NCHS) polynomial of

degree d in n (noncommuting) variables is

Hd(x1, . . . , xn) := σ
(
hd(x1, . . . , xn)

)
∈ R<x1, . . . , xn> . (3)

For example,

H2(x1, x2) = x2
1 +

1
2 (x1x2 + x2x1) + x2

2 (4)

and

H4(x1, x2) = x4
1 +

1
4 (x

3
1x2 + x2

1x2x1 + x1x2x
2
1 + x2x

3
1)

+ 1
6 (x

2
1x

2
2 + x1x2x1x2 + x1x

2
2x1 + x2x

2
1x2 + x2x1x2x1 + x2

2x
2
1)

+ 1
4 (x1x

3
2 + x2x1x

2
2 + x2

2x1x2 + x3
2x1) + x4

2.

Note that the definition (3) differs from that of Gelfand et al. [GKL+95], where non-

commutative complete homogeneous symmetric functions are formal objects that

specialize to noncommutative rational functions or non-hermitian noncommutative

polynomials [GKL+95, Section 7]. However, since we are interested in positivity,

the definition (3) is natural as it produces a hermitian noncommutative polynomial.

In fact, the definition (3) fits in the framework of noncommutative symmetric func-

tions as introduced by Rosas and Sagan [RS06] (our NCHS polynomials are scalar

multiples of some of their noncommutative analogues of CHS polynomials).

We can now state our main result:

Theorem 1.1. Let n, d ∈ N.
(i) The noncommutative polynomial H2d(x1, . . . , xn) is a sum of

(
n−1+d

d

)
hermit-

ian squares in R<x1, . . . , xn>. This number of hermitian squares is minimal.

(ii) For all k ∈ N and all hermitian operators X1 . . . , Xn on a Hilbert space,

H2d(X1, . . . , Xn) ⪰ µn,d(X
2d
1 + · · ·+X2d

n ),
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in which ⪰ denotes the Löwner partial order and

µn,d =



1 if n = 1,

(n−1+2d
2d )

(n−1+d
d )((n−1+d

d )+1)
if n ≥ 2 and d is odd,

(n−1+2d
2d )

(n−1+d
d )((n−1+d

d )+n−1)
if n ≥ 2 and d is even.

This lower bound is best possible.

In general, the fully symmetrized noncommutative lift does not preserve inequal-

ities. While positivity of even-degree CHS polynomials may be seen as a special

case of positivity of Schur polynomials for even partitions, the fully symmetrized

noncommutative lifts of the latter are not positive semidefinite in general (Remark

2.6), lending more significance to Theorem 1.1. Furthermore, while the exact lower

bounds for CHS polynomials are not known, the rigidity of noncommuting vari-

ables, often leveraged in free real algebraic geometry, allows us to determine the

exact (and explicit) lower bounds for NCHS polynomials as in Theorem 1.1. These

noncommutative results also carry implications for the classical CHS polynomials,

for which we obtain SOS representations and new lower bounds.

Corollary 1.2. h2d(x1, . . . , xn) is a sum of
(
n−1+d

d

)
squares in R[x1, . . . , xn]. Fur-

thermore, h2d(x1, . . . , xn) ≥ µn,d

nd−1 ∥x∥2d2 for all x ∈ Rn.

Observe that
µn,d

nd−1 > 1
2dd!

whenever d is sufficiently larger than n, in which

case Corollary 1.2 provides a tighter estimate than (1). Also, our method appears

to be the first explicit method to express CHS polynomials as sums of squares.

Another approach to SOS representations for (commutative) CHS polynomials was

suggested by Speyer and Tao [Tao17], although it is unclear if their approach was

ultimately pursued and formally published.

This paper is organized as follows. Section 2 contains the proof of Theorem 1.1(i)

(see Proposition 2.2). We establish Theorem 1.1(ii) in Section 3 (see Proposition

3.3). We conclude in Section 4 with several examples and remarks.

2. Noncommutative Hunter’s theorem

In order to study positivity of NCHS polynomials, we investigate spectral fea-

tures of certain combinatorial matrices. We start by introducing some notation

used throughout the paper. Let n, d ∈ N. By [x1, . . . , xn]d ⊂ [x1, . . . , xn] and

<x1, . . . , xn>d ⊂ [x1, . . . , xn] we denote the sets of monomials and words of degree

d, respectively. Similarly, let R[x1, . . . , xn]d ⊂ R[x1, . . . , xn] and R<x1, . . . , xn>d ⊂
R<x1, . . . , xn> denote the subspaces of homogeneous polynomials of degree d.

When used as index sets, we endow [x1, . . . , xn]d and <x1, . . . , xn>d with lexi-

cographic order. Define the rational matrices

G̃n,d =

[
1

|α−1(uv)|

]
u,v∈[x1,...,xn]d

, Gn,d =

[
1

|(α−1 ◦ π)(u∗v)|

]
u,v∈<x1,...,xn>d

.

(5)

By (2), their entries are reciprocals of certain multinomial coefficients. Throughout

the paper, we often interpret matrices (5) as linear maps G̃n,d : R[x1, . . . , xn]d →
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R[x1, . . . , xn]d and Gn,d : R<x1, . . . , xn>d → R<x1, . . . , xn>d in a natural way.

For our purposes, the crucial properties of G̃n,d and Gn,d are the following.

Proposition 2.1. Let n, d ∈ N.
(i) G̃n,d is positive definite.

(ii) Gn,d is positive semidefinite, kerGn,d = kerπ|R<x1,...,xn>d
, and rankGn,d =(

n−1+d
d

)
.

Proof. Define a positive semidefinite linear functional λ : R[x1, . . . , xn] → R by

λ(p) =

∫
Σn−1

p dΣn−1,

where Σn−1 = {(t1, . . . , tn) ∈ Rn
≥0 : t1+ · · ·+tn = 1} is the standard (n−1)-simplex

endowed with the Lebesgue measure. By the Dirichlet integral formula (see, e.g.,

the Dirichlet or multivariate beta distribution [BS94, Section 3.2.5]) and (2),

λ(xk1
1 · · ·xkn

n ) =
√
n

k1! · · · kn!
(k1 + · · ·+ kn + n− 1)!

=

√
n(k1 + · · ·+ kn)!

(k1 + · · ·+ kn + n− 1)!
· 1(

k1+···+kn

k1,...,kn

)
=

√
n(k1 + · · ·+ kn)!

(k1 + · · ·+ kn + n− 1)!
· 1

|α−1(xk1
1 · · ·xkn

n )|
.

(6)

If p ∈ R[x1, . . . , xn] is homogeneous and λ(p2) = 0, then p|Σn−1
≡ 0. Since p

vanishes on Σn−1 if and only if it is a multiple of x1 + · · · + xn − 1, homogeneity

implies that p = 0. Thus, (p, q) 7→ λ(pq) is an inner product on R[x1, . . . , xn]d.

(i): By (6), the matrix G̃n,d is a positive multiple of the Gram matrix of the linearly

independent vectors [x1, . . . , xn]d with respect to an inner product. Thus, G̃n,d is

positive definite.

(ii): Since [Gn,d]u,v = [G̃n,d]π(u),π(v) for all u, v ∈ <x1, . . . , xn>d, the diagram

R<x1, . . . , xn>d R<x1, . . . , xn>d

R[x1, . . . , xn]d R[x1, . . . , xn]d

Gn,d

π π

G̃n,d

commutes. The positive definiteness of G̃n,d ensures that Gn,d is positive semidefi-

nite, rankGn,d = rank G̃n,d =
(
n−1+d

d

)
, and kerGn,d = kerπ|R<x1,...,xn>d

. □

Now equipped with Proposition 2.1, we are ready to establish Theorem 1.1(i).

Proposition 2.2. Let n, d ∈ N. In R<x1, . . . , xn>, we have

H2d(x1, . . . , xn) = w∗ Gn,d w, (7)

where w is the column vector of words in <x1, . . . , xn>d ordered lexicographically.

The noncommutative polynomial H2d(x1, . . . , xn) is a sum of
(
n−1+d

d

)
hermitian

squares in R<x1, . . . , xn>, and this number of hermitian squares is minimal.
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Proof. Each element in <x1, . . . , xn>2d can be uniquely written as u∗v for some

u, v ∈ <x1, . . . , xn>d. Thus, every (hermitian) f ∈ R<x1, . . . , xn>2d can be writ-

ten as f = w∗Aw for a unique (symmetric) real matrix A; namely, the coefficient

of u∗v in f is the (u, v) entry of A. By (3), the coefficient of u∗v in H2d(x1, . . . , xn)

is 1
|α−1(π(u∗v))| . Thus, (7) holds by the definition of Gn,d. Since Gn,d is positive

semidefinite, it factors as Gn,d = S∗S, where S has rankGn,d =
(
n−1+d

d

)
rows.

Hence, H2d(x1, . . . , xn) = (Sw)∗(Sw) is a sum of
(
n−1+d

d

)
hermitian squares. To

see that this number of hermitian squares is minimal, suppose H2d(x1, . . . , xn) =∑r
j=1 q

∗
j qj for qj ∈ R<x1, . . . , xn>. The homogeneity of H2d(x1, . . . , xn) ensures

that qj ∈ R<x1, . . . , xn>d. Expanding qj along the basis <x1, . . . , xn>d gives

H2d(x1, . . . , xn) = w∗Q∗Qw for a matrix Q with r rows. By the uniqueness obser-

vation from the start of the proof, we have Q∗Q = Gn,d, and thus r ≥
(
n−1+d

d

)
. □

Remark 2.3. One can write Gn,d = S∗ΛS with Λ =
[ λ1 . . .

]
diagonal using only

linear operations over Q [Lam05, Corollary I.2.4]. This gives rise to a weighted

SOHS representation of H2d(x1, . . . , xn) with rational coefficients: if the columns

of S are indexed by <x1, . . . , xn>d, then

H2d(x1, . . . , xn) =
∑
j

λj s
∗
jsj , sj =

∑
w∈<x1,...,xn>d

Sj,w w.

Example 2.4. Let n = 2 and d = 1. Then w =
[
x1
x2

]
and G2,1 =

[ 1 1
2

1
2 1

]
= S∗ΛS,

in which S =
[
1 1

2
0 1

]
and Λ = diag(1, 3

4 ), so Sw =
[
x1+

1
2x2

x2

]
and hence

H2(x1, x2) = (x1 +
1
2x2)

∗(x1 +
1
2x2) +

3
4x

∗
2x2,

which reduces to (4). If x1 and x2 commute, we recover h2(x1, x2) = x2
1+x1x2+x2

2.

Example 2.5. Let n = 2 and d = 2. Then G2,2 = S∗ΛS, in which

G2,2 =


1 1

4
1
4

1
6

1
4

1
6

1
6

1
4

1
4

1
6

1
6

1
4

1
6

1
4

1
4 1

 , S =


1 1

4
1
4

1
6

0 0 0 1

0 1 1 2

0 0 0 1

 , and Λ =


1 0 0 0

0 5
9 0 0

0 0 5
48 0

0 0 0 0

 .

Thus, H4(x1, x2) = s∗1s1+
5
9s

∗
2s2+

5
48s

∗
3s3, in which s1 = x2

1+
1
4x1x2+

1
4x2x1+

1
6x

2
2,

s2 = x2
2, and s3 = x1x2+x2x1+2x2

2. If x1 and x2 commute, we recover h4(x1, x2) =

x4
1 + x3

1x2 + x2
1x

2
2 + x1x

3
2 + x4

2.

There is a reason we focus on NCHS polynomials and a noncommutative version

of Hunter’s theorem, instead of analogues for more general Schur polynomials:

Remark 2.6. In the commutative landscape, nonnegativity of CHS polynomials

can be viewed as a special case of nonnegativity of Schur polynomials for even

partitions. To every partition λ ⊢ d with n nonnegative parts one assigns the

Schur polynomial sλ(x1, . . . , xn) (see [Sta99, Section 7.10] for the definition). Then,

hd(x1, . . . , xn) = s(d,0,...,0)(x1, . . . , xn). In general, if all the parts of λ are even,

the polynomial sλ(x1, . . . , xn) is nonnegative on Rn (see Speyer’s response [Tao17]

using the bialternant formula in terms of Vandermonde-like determinants [Sta99,
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Section 7.15] and Descartes’ rule of signs). However, while the noncommutative

polynomial σ(h2d(x1, . . . , xn)) is globally positive semidefinite by Proposition 2.2,

this is no longer true for σ(sλ(x1, . . . , xn)) with a general even λ.

For example, s(2,2)(x1, x2) = x2
1x

2
2, and thus

σ
(
s(2,2)(x1, x2)

)
=

1

6

(
x2
1x

2
2 + x1x2x1x2 + x1x

2
2x1 + x2x

2
1x2 + x2x1x2x1 + x2

2x
2
1

)
.

This noncommutative polynomial evaluates to 1
6 [

1 2
2 3 ] ̸⪰ 0 at the pair of hermitian

matrices [ 0 0
0 1 ], [

2 1
1 0 ]. This agrees with the heuristic that fully symmetrized noncom-

mutative lifts of nonnegative polynomials are usually not positive semidefinite, and

this somewhat distinguishes CHS polynomials from general Schur polynomials.

3. Sharp lower bound

In order to establish an exact quantitative version of positivity for NCHS poly-

nomials, we require two further matrices. For n, d ∈ N, let M̃n,d and Mn,d be square

matrices indexed by [x1, . . . , xn]d and <x1, . . . , xn>d, respectively, whose (xd
j , x

d
j )

entries for j = 1, 2, . . . , n are 1, and all the other entries are 0. Both M̃n,d and Mn,d

are diagonal projections of rank n. The next lemma indicates the role of Mn,d in

estimating the NCHS polynomials.

Lemma 3.1. Let n, d ∈ N and µ ∈ R. The following are equivalent.

(i) H2d(X1, . . . , Xn) ⪰ µ(X2d
1 +· · ·+X2d

n ) for all hermitian operators X1, . . . , Xn

on a Hilbert space.

(ii) H2d(X1, . . . , Xn) ⪰ µ(X2d
1 + · · · + X2d

n ) for all symmetric K × K matrices

X1, . . . , Xn, where K = nd+1−1
n−1 .

(iii) Gn,d − µMn,d is positive semidefinite.

Proof. Clearly, (i) ⇒ (ii). Let fµ = H2d(x1, . . . , xn) − µ(x2d
1 + · · · + x2d

n ); then

fµ = w∗(Gn,d−µMn,d)w, where w is the column vector of words in <x1, . . . , xn>d.

Thus, (iii) ⇒ (i). If fµ is positive semidefinite on all symmetric K ×K matrices,

then it is a sum of hermitian squares in R<x1, . . . , xn> [MP05, Theorem 1.1 and

Remark 1.2]. Since fµ is homogeneous, the corresponding hermitian squares are

homogeneous, so fµ = w∗Pw for some P ⪰ 0. By homogeneity, Gn,d−µMn,d = P ,

so (ii) ⇒ (iii). □

For n, d ∈ N, let us define µn,d as the largest µ ∈ R that satisfies the equivalent

statements in Lemma 3.1,

µn,d = max
{
µ ∈ R : H2d(X1, . . . , Xn) ⪰ µ(X2d

1 + · · ·+X2d
n ) for all Xj

}
= max{µ ∈ R : Gn,d − µMn,d ⪰ 0}.

(8)

The second line in (8) justifies the use of maximum instead of supremum, and

µn,d ≥ 0 by Proposition 2.2. The number µn,d is the largest lower bound on

H2d(x1, . . . , xn) with respect to the noncommutative positive form x2d
1 + · · ·+ x2d

n .

Clearly, µ1,d = 1. As an auxiliary step towards a closed-form expression for µn,d,

we require some partial information about the inverse of G̃n,d (which exists by

Proposition 2.1(i)). Using combinatorial means, we calculate the preimage of xd
1

under G̃n,d as follows.
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Proposition 3.2. Let n, d ∈ N. The map G̃−1
n,d : R[x1, . . . , xn]d → R[x1, . . . , xn]d

sends xd
1 to (

n−1+d
d

)(
n−1+2d

2d

) d∑
i=0

(−1)d−i

(
d

i

)(
n− 1 + d

i

)
xi
1(x2 + · · ·+ xn)

d−i.

Proof. Write the polynomial above as
∑

v∈[x1,...,xn]d
cvv. We want to show that

∑
v∈[x1,...,xn]d

(
G̃n,d)u,v · cv =

{
1 if u = xd

1,

0 otherwise.

That is, for nonnegative integers ℓ1, . . . , ℓn with ℓ1 + · · ·+ ℓn = d, we claim that∑
k1+···+kn=d

(−1)d−k1

(
d

k1

)(
n− 1 + d

k1

)
(d− k1)!

k2! · · · kn!
(ℓ1 + k1)! · · · (ℓn + kn)!

(2d)!
(9)

equals
(n−1+2d

2d )
(n−1+d

d )
if ℓ1 = d and 0 otherwise. We can rewrite (9) as

d!

(2d)!

∑
k1+···+kn=d

(−1)d−k1

(
n− 1 + d

k1

)
(ℓ1 + k1)! · · · (ℓn + kn)!

k1! · · · kn!

=
d!

(2d)!

d∑
k1=0

(−1)d−k1

(
n− 1 + d

k1

)
(ℓ1 + k1)!

k1!

∑
k2+···+kn=d−k1

(ℓ2 + k2)! · · · (ℓn + kn)!

k2! · · · kn!
.

By the binomial coefficient reflection
(
ℓ+k
k

)
= (−1)k

(−ℓ−1
k

)
[GKP94, (5.14) on page

164] and generalized Vandermonde’s convolution [GKP94, (5.27) on page 170 and

Exercise 5.62 on page 248],∑
k2+···+kn=d−k1

(ℓ2 + k2)! · · · (ℓn + kn)!

k2! · · · kn!

= ℓ2! · · · ℓn!
∑

k2+···+kn=d−k1

(
ℓ2 + k2

k2

)
· · ·

(
ℓn + kn

kn

)

= ℓ2! · · · ℓn!(−1)d−k1

∑
k2+···+kn=d−k1

(
−ℓ2 − 1

k2

)
· · ·

(
−ℓn − 1

kn

)

= ℓ2! · · · ℓn!(−1)d−k1

(
−ℓ2 − · · · − ℓn − (n− 1)

d− k1

)
.

Thus, (9) becomes

d!

(2d)!

d∑
k1=0

(−1)d−k1

(
n− 1 + d

k1

)
(ℓ1 + k1)!

k1!
ℓ2! · · · ℓn!(−1)d−k1

(
−ℓ2 − · · · − ℓn − (n− 1)

d− k1

)

=
d!ℓ1! · · · ℓn!

(2d)!

d∑
k1=0

(
n− 1 + d

k1

)(
ℓ1 + k1

k1

)(
ℓ1 − d− n+ 1

d− k1

)
.

Setting m = n− 1 + d, it suffices to prove

d∑
k=0

(
m

k

)(
ℓ+ k

k

)(
ℓ−m

d− k

)
=

{(
m+d
d

)
if ℓ = d,

0 if ℓ < d.
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This is a consequence of the following calculation, valid for a general ℓ ∈ Z,
d∑

k=0

(
m

k

)(
ℓ−m

d− k

)(
ℓ+ k

k

)
=

d∑
k=0

(
m

k

)(
ℓ−m

d− k

) d∑
j=0

(
ℓ

j

)(
k

j

)

=

d∑
j=0

d∑
k=j

(
ℓ−m

d− k

)(
ℓ

j

)(
m

k

)(
k

j

)
=

d∑
j=0

d∑
k=j

(
ℓ−m

d− k

)(
ℓ

j

)(
m

j

)(
m− j

k − j

)

=

d∑
j=0

(
ℓ

j

)(
m

j

) d∑
k=j

(
ℓ−m

d− k

)(
m− j

k − j

)
=

d∑
j=0

(
ℓ

j

)(
m

j

) d−j∑
i=0

(
ℓ−m

d− j − i

)(
m− j

i

)

=

d∑
j=0

(
m

j

)(
ℓ

j

)(
ℓ− j

d− j

)
=

d∑
j=0

(
m

j

)(
ℓ

d

)(
d

j

)
=

(
ℓ

d

)(
m+ d

d

)
,

where we used Vandermonde’s convolution [GKP94, (5.27) on page 170] twice. □

Since µn,d is the optimal lower bound for H2d(x1, . . . , xn) by the definition (8),

the following derivation of a closed formula for µn,d completes the proof of Theorem

1.1(ii).

Proposition 3.3. Let n, d ∈ N with n ≥ 2. Then

µn,d =

(
n−1+2d

2d

)(
n−1+d

d

) ((
n−1+d

d

)
+∆

) ,
where ∆ = 1 if d is odd and ∆ = n− 1 if d is even.

Proof. For simplicity, we suppress the subscripts in Gn,d,Mn,d, G̃n,d, M̃n,d. By

Lemma 3.1,

µn,d = max{µ ∈ R : G− µM ⪰ 0}. (10)

We first claim that kerG ⊆ kerM . Let f ∈ kerG. Then π(f) = 0 by Proposition

2.1. Since π is abelianization, no term of f is a scalar multiple of xd
j . Thus,

f ∈ kerM by the definition of M .

Since kerG ⊆ kerM , we can consider (10) modulo kerG = kerπ∩R<x1, . . . , xn>d.

That is, it suffices to work with G̃ and M̃ instead of G and M , respectively. Hence,

µn,d = max{µ ∈ R : G̃− µM̃ ⪰ 0}. (11)

Recall that G̃ is positive definite by Proposition 2.1 and M̃ is the diagonal projection

onto span{xd
1, . . . , x

d
n}. Let us reorder [x1, . . . , xn]d so that it starts with xd

1, . . . , x
d
n,

and write

G̃ =

[
A B∗

B C

]
and M̃ =

[
I 0

0 0

]
with respect to {xd

1, . . . , x
d
n} and [x1, . . . , xn]d \ {xd

1, . . . , x
d
n}. By (11),

µn,d = max

{
µ ∈ R :

[
A− µI B∗

B C

]
⪰ 0

}
= max

{
µ ∈ R : (A−B∗C−1B)− µI ⪰ 0

}
,

so µn,d is the smallest eigenvalue of the Schur complement A − B∗C−1B. Note

that G′ := (A − B∗C−1B)−1 is the principal block of G̃−1 indexed by xd
1, . . . , x

d
n.
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Since G̃ is invariant under permutations of x1, . . . , xn in its row and column indices

simultaneously, its inverse G̃−1 displays the same invariance. Hence, all the off-

diagonal entries of G′ are the same, and all the diagonal entries of G′ are the same.

By Proposition 3.2, the diagonal and the off-diagonal terms of G′ are

ρ0 :=

(
n−1+d

d

)2(
n−1+2d

2d

) and ρ1 := (−1)d
(
n−1+d

d

)(
n−1+2d

2d

) ,
respectively. Indeed, Proposition 3.2 encodes the first column of G̃−1, as follows.

If p is the polynomial that maps to xd
1 under G̃, then ρ0 (the (1, 1) entry of G̃−1)

is the coefficient of xd
1 in p, and ρ1 (the (2, 1) entry of G̃−1) is the coefficient of xd

2

in p. The spectrum of G′ is therefore {ρ0 + (n− 1)ρ1, ρ0 − ρ1}, so the spectrum of

A−B∗C−1B is {(ρ0 + (n− 1)ρ1)
−1, (ρ0 − ρ1)

−1}. Thus,

µn,d =

{
1

ρ0+(n−1)ρ1
if d is even,

1
ρ0−ρ1

if d is odd,

which gives the desired formula. □

In the spirit of Hunter’s theorem, here is the best lower bound valid for every n.

Corollary 3.4. Let d ∈ N. For all n ∈ N and hermitian operators X1, . . . , Xn,

H2d(X1, . . . , Xn) ⪰
1(
2d
d

) (X2d
1 + · · ·+X2d

n

)
,

and this is the optimal n-independent bound.

Proof. The sequence of optimal bounds (µn,d)n is monotonically decreasing, and

the formula in Proposition 3.3 implies

lim
n→∞

µn,d = lim
n→∞

(
n+2d
2d

)(
n+d
d

)2 =
(d!)2

(2d)!
lim

n→∞

(n+ 2d)2d

((n+ d)d)
2 =

(d!)2

(2d)!
=

(
2d

d

)−1

,

where an underscored exponent denotes a falling factorial. □

4. Remarks

We conclude the paper with certain subtle aspects of exact lower bounds for

NCHS polynomials, the consequences of Theorem 1.1 for positivity of the classical

CHS polynomials, and two open problems.

Proposition 3.3 gives the sharp lower bound on H2d(x1, . . . , xn) in terms of x2d
1 +

· · ·+ x2d
n . In particular, since µn,d > 0, it implies that H2d(x1, . . . , xn) is a definite

form, in the sense that

kerH2d(X1, . . . , Xn) = kerX1 ∩ · · · ∩ kerXn

for all hermitian operators Xj . The next lemma illustrates that in the noncommu-

tative context, not all forms are suitable for bounding H2d(x1, . . . , xn) from below.

Proposition 4.1. Let n, d ∈ N, with n ≥ 2 and d ≥ 3. There is no β > 0 such that

H2d(X1, . . . , Xn) ⪰ β(X2
1 + · · · + X2

n)
d is positive semidefinite for all symmetric

K ×K matrices X1, . . . , Xn, where K = nd+1−1
n−1 .
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Proof. Let <x2
1, . . . , x

2
n>d ⊂ <x1, . . . , xn>2d denote the set of words in x2

1, . . . , x
2
n.

Observe that

(x2
1 + · · ·+ x2

n)
d =

∑
w∈<x2

1,...,x
2
n>d

w. (12)

Let Bn,d be the square matrix indexed by <x1, . . . , xn>d and defined by

(Bn,d)u,v =

{
1 if u∗v ∈ <x2

1, . . . , x
2
n>d,

0 otherwise.

Then Bn,d is positive semidefinite; as with Gn,d, we may view it as a linear map

R<x1, . . . , xn>d → R<x1, . . . , xn>d.

Let β > 0. Then H2d(x1, . . . , xn) − β(x2
1 + · · · + x2

n)
d = w∗(Gn,d − βBn,d)w

by (12), where w is the column vector of words in <x1, . . . , xn>d. As in the

proof of Lemma 3.1 we see using [MP05, Theorem 1.1 and Remark 1.2] that

H2d(x1, . . . , xn)−β(x2
1+· · ·+x2

n)
d is positive semidefinite on all n-tuples of symmet-

ricK×K matrices if and only if Gn,d−βBn,d ⪰ 0. Now let f = xd−3
1 (x1x

2
2−x2

2x1) ∈
R<x1, . . . , xn>d. Then π(f) = 0 and so f ∈ kerGn,d by Proposition 2.1, yet

f /∈ kerBn,d. Hence, Gn,d − βBn,d ̸⪰ 0. □

Next, we specialize Theorem 1.1 to scalar variables, which gives rise to a new

lower bound for classical CHS polynomials.

Corollary 4.2. Let d, n ∈ N. For every x ∈ Rn,

h2d(x) ≥
µn,d

nd−1
∥x∥2d2 .

Proof. On one hand, h2d(x) ≥ µn,d∥x∥2d2d by Theorem 1.1. On the other hand,

∥x∥2d2 ≤ nd−1∥x∥2d2d by a standard estimate between ℓ2 and ℓ2d norms on Rn. □

Remark 4.3. Let us compare the estimate from Corollary 4.2 with the estimate

in Hunter’s theorem h2d(x) ≥ 1
2dd!

∥x∥2d2 . For a fixed n, the factor
µn,d

nd−1 decays

exponentially in d (since the binomial coefficients in µn,d are polynomials in d),

while the factor 1
2dd!

decays factorially in d. Thus,

µn,d

nd−1
≫ 1

2dd!
when d ≫ n,

so as d → ∞, our lower bound on h2d(x1, . . . , xn) is ultimately better than the

original lower bound provided by Hunter’s theorem.

When d = 1, the identity H2(x1, . . . , xn) − 1
2 (x

2
1 + · · · + x2

n) = 1
2 (x1 + · · · +

xn)
2 shows that µn,1 is also the optimal bound for h2(x1, . . . , xn), and tightness

is attained on the hyperplane x1 + · · · + xn = 0. Analogous conclusions fail when

d = 2, as shown by the following example.

Example 4.4. We demonstrate explicitly some subtleties of µn,d in the case n =

d = 2. First, while the constants µn,d are optimal for NCHS polynomials, they are

not tight for CHS polynomials. Concretely, Lagrange multipliers show that

min
x4
1+x4

2=1
h4(x1, x2) =

1

2
,

so h4(x1, x2) ≥ 1
2 (x

4
1 + x4

2) for all (x1, x2) ∈ R2, and 1
2 is optimal.



NONCOMMUTATIVE HUNTER’S THEOREM 11

Secondly, since µ2,2 = 5
12 < 1

2 , Proposition 3.3 establishes that H4(X1, X2) ⪰
5
12 (X

4
1 +X4

2 ) for all hermitian operators X1, X2, and
5
12 is optimal. To see the last

assertion in a more direct way, consider the one-parametric family of matrix pairs

X1(t) = ϕt

[
1 1

1
√
2t−4−61−3

2ϕ2

]
and X2(t) = −ϕ−1t

[
1 1

1
√
2t−4−61−3

2ϕ−2

]

for t ∈ (0, 4

√
2
61 ), where ϕ = 1+

√
5

2 . The (1, 1) entry of X1(t)
4+X2(t)

4 is 1, and the

(1, 1) entry of h4(X1(t), X2(t)) is
5
12 (1 + 25t4). Thus, the (1, 1) entry of

h4

(
X1(t), X2(t)

)
− 5

12

(
X1(t)

4 +X2(t)
4
)

goes to 0 as t → 0, demonstrating that there is no better bound than 5
12 .

The reason behind demonstrating optimality of 5
12 with a family of matrix pairs

instead of a single matrix pair is the following claim: for every pair of symmetric

k×k matrices X1, X2 there exists ε > 0 such that H4(X1, X2) ⪰ ( 5
12 +ε)(X4

1 +X4
2 ).

That is, for each pair there exists a better bound than 5
12 , but not a better one

that would hold for all pairs; note that this does not contradict the fact that µ2,2

is the maximum (not just the supremum) as in (8). To prove the above claim, we

first observe that

ker

(
H4(X1, X2)−

5

12
(X4

1 +X4
2 )

)
= kerX1 ∩ kerX2. (13)

Indeed, the SOHS representation

H4(x1, x2)−
5

12
(x4

1 + x4
2) =

1

24
s∗1s1 +

5

24
s∗2s2,

where

s1 = x2
1 + x2

2 + 2(x1 + x2)
2 and s2 = x2

1 − x2
2,

shows that H4(X1, X2)v = 0 implies s1(X1, X2)v = 0, and then X1v = X2v = 0.

If ε > 0 is the ratio between the smallest positive eigenvalue ofH4(X1, X2)− 5
12 (X

4
1+

X4
2 ) and the largest eigenvalue of X4

1 +X4
2 , then (13) implies that H4(X1, X2) ⪰

( 5
12 + ε)(X4

1 +X4
2 ).

Example 4.4 leads us to speculate the following.

Conjecture 4.5. Let n, d ≥ 2. For all tuples of hermitian operators X1, . . . , Xn

on a Hilbert space,

ker
(
H2d(X1, . . . , Xn)− µn,d(X

2d
1 + · · ·+X2d

n )
)
= kerX1 ∩ · · · ∩ kerXn.

There are two immediate consequences of Conjecture 4.5. First, the equality

H2d(X1, . . . , Xn) = µn,d(X
2d
1 + · · · + X2d

n ) would hold if and only if X1 = · · · =
Xn = 0. Second, for every tuple of hermitian matrices X1, . . . , Xn there would

exist ε > 0 such that H2d(X1, . . . , Xn) ⪰ (µn,d + ε)(X2d
1 + · · ·+X2n

d ), by the same

argument as in Example 4.4.

Let us conclude with another conjecture. Table 1 displays SOHS representa-

tions of H2d(x1, x2) for d ≤ 4. A reader may notice that only polynomials with

nonnegative coefficients appear in Table 1. This is a consequence of Gn,d being a

completely positive matrix, which has been verified for small n, d. Here, a matrix
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d λi si
1 1 x1 +

1
2x2

3
4 x2

2 1 x2
1 +

1
4x1x2 +

1
4x2x1 +

1
6x

2
2

5
9 x2

2

5
48 x1x2 + x2x1 + 2x2

2

3 1 x3
1 +

1
6x

2
1x2 +

1
6x1x2x1 +

1
15x1x

2
2 +

1
6x2x

2
1 +

1
15x2x1x2 +

1
15x

2
2x1 +

1
20x

3
2

7
16 x3

2

7
180 x2

1x2 + x1x2x1 + x1x
2
2 + x2x

2
1 + x2x1x2 + x2

2x1 +
3
2x

3
2

7
300 x1x

2
2 + x2x1x2 + x2

2x1 +
9
2x

3
2

4 1 x4
1 +

1
8x

3
1x2 +

1
8x

2
1x2x1 +

1
28x

2
1x

2
2 +

1
8x1x2x

2
1 +

1
28x1x2x1x2 +

1
28x1x

2
2x1

+ 1
56x1x

3
2 +

1
8x2x

3
1 +

1
28x2x

2
1x2 +

1
28x2x1x2x1 +

1
56x2x1x

2
2 +

1
28x

2
2x

2
1

+ 1
56x

2
2x1x2 +

1
56x

3
2x1 +

1
70x

4
2

9
25 x4

2

9
448 x3

1x2 + x2
1x2x1 +

2
3x

2
1x

2
2 + x1x2x

2
1 +

2
3x1x2x1x2 +

2
3x1x

2
2x1 +

3
5x1x

3
2

+x2x
3
1 +

2
3x2x

2
1x2 +

2
3x2x1x2x1 +

3
5x2x1x

2
2 +

2
3x

2
2x

2
1 +

3
5x

2
2x1x2

+ 3
5x

3
2x1 +

4
5x

4
2

3
400 x1x

3
2 + x2x1x

2
2 + x2

2x1x2 + x3
2x1 + 8x4

2

1
245 x2

1x
2
2 + x1x2x1x2 + x1x

2
2x1 +

9
4x1x

3
2 + x2x

2
1x2 + x2x1x2x1 +

9
4x2x1x

2
2

+x2
2x

2
1 +

9
4x

2
2x1x2 +

9
4x

3
2x1 + 6x4

2

Table 1. SOHS representations of H2d(x1, x2) =
∑

i λis
∗
i si for

d = 1, 2, 3, 4.

is completely positive if it factors as S∗S for a nonnegative matrix S. This notion

arises in combinatorial and nonconvex quadratic optimization [BSM03].

Conjecture 4.6. The matrix Gn,d is completely positive for all n, d ∈ N.

In the context of this paper, Conjecture 4.6 implies that every NCHS polyno-

mial admits an SOHS representation involving only polynomials with nonnegative

coefficients, that is, an SOHS representation without any term cancellations.
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