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Abstract. Hilbert’s Nullstellensatz is one of the most fundamental corre-

spondences between algebra and geometry, and has inspired a plethora of non-

commutative analogs. In last two decades, there has been an increased interest

in understanding vanishing sets of polynomials in several matrix variables with-

out restricting the matrix size, prompted by developments in noncommutative

function theory, control systems, operator algebras, and quantum information

theory. The emerging results vary according to the interpretation of what van-

ishing means. For example, given a collection of noncommutative polynomials,

one can consider all matrix tuples at which the values of these polynomials are

all zero, singular, have common kernel, or have zero trace. This survey re-

views Nullstellensätze for the above types of vanishing sets, and identifies their

structural counterparts in the free algebra.

1. Introduction

The classical Hilbert’s Nullstellensatz [Hil93] is a cornerstone of algebraic ge-

ometry. The successful interplay between commutative algebra and geometry

inspired analogous advances in noncommutative algebraic geometry [VOV81,

Ros95, BRSSW16]. As opposed to the classical commutative theory, noncom-

mutative variants of algebraic geometry are rather diverse, both in scope and

goals; in particular, there are several results that can be interpreted as noncom-

mutative Nullstellensätze [Ami57, Coh75, Irv79, BR23]. This survey focuses on a

distinct family of such theorems, where vanishing sets of polynomials on matrix

tuples of arbitrary sizes play the role of algebraic sets.

Let k be an algebraically closed field of characteristic 0, and let x = (x1, . . . , xd)

be a tuple of freely noncommuting variables. Let k<x> be the free k-algebra

Date: March 10, 2024.

2020 Mathematics Subject Classification. 08B20, 15A24, 47A56, 16D25.
Key words and phrases. Noncommutative polynomial, free algebra, Nullstellensatz, matricial

zero set.
1



2 JURIJ VOLČIČ

generated by x1, . . . , xd, equipped with the standard degree function deg. Ele-

ments of k<x> are called noncommutative polynomials. In this paper we are

interested in evaluations of noncommutative polynomials on points in Mn(k)
d

for every n ∈ N, and their vanishing features. That is, every f ∈ k<x> and

X = (X1, . . . , Xd) ∈ Mn(k)
d give rise to f(X) ∈ Mn(k) in a natural way.

Before looking at the general motivation behind this perspective, let us com-

ment on why it is reasonable to view noncommutative polynomials as functions

in dimension-independent matrix variables. For a general mathematician, matrix

algebras are the most familiar noncommutative rings; moreover, noncommutative

polynomials are determined by their evaluations on matrices of all sizes (in other

words, the finite-dimensional representations distinguish elements of the free al-

gebra), but not by their evaluations on matrices of a fixed size (because of the

existence of polynomial identities [Row80]).

The above perspective on noncommutative polynomials as functions in sev-

eral matrix variables of arbitrary sizes became especially prominent with the rise

of free analysis [K-VV14, AM15] and free real algebraic geometry [dOHMP09,

HKM13]. The former develops the analytic theory of noncommutative polyno-

mials and more general noncommutative functions, while the latter investigates

noncommutative inequalities, their geometry and optimization. These topics have

been fueled by dimension-independent problems in control theory, free probabil-

ity, semidefinite optimization, and quantum information theory. Several algebraic

results results arising from free analysis and free real algebraic geometry can be

seen as noncommutative Nullstellensätze, connecting vanishing of noncommuta-

tive polynomials with ring-theoretic concepts in the free algebra.

Throughout the text, let f1, . . . , fℓ, g ∈ k<x> be noncommutative polynomi-

als. Suppose g vanishes at all matrix tuples where all f1, . . . , fℓ vanish; what

can be said about the structural relation between f1, . . . , fℓ and g in the free

algebra? The answer to this question depends on the precise definition of “van-

ishing”; namely, one might be interested in matrix tuples where the values of

polynomials are zero, or singular, or have zero trace, and so on. This survey

compares various different vanishing scenarios, reviews corresponding Nullstel-

lensätze that relate them to their counterparts in the free algebra (e.g., ideals,

left ideals, factorization), and poses some open questions about the geometry-

algebra correspondences in the context of dimension-free matricial evaluations of

noncommutative polynomials. It is also worth acknowledging what this survey

does not explore. Closely related theorems consider the free algebra with invo-

lution and its ∗-representations, leading to so-called real Nullstellensätze [PS76,
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Scm09, CHMN13, KS18, HKV22]. These results often have a more functional-

analytic flavor; in this text, we restrict to the more ring-theoretic statements.

2. True zeros

This section addresses the most standard zero sets of noncommutative polyno-

mials. For f1, . . . , fℓ ∈ k<x> let

Z(f1, . . . , fℓ) =
⋃
n∈N

{
X ∈ Mn(k)

d : fj(X) = 0 ∀j
}
,

and let (f1, . . . , fℓ) be the two-sided ideal in k<x> generated by f1, . . . , fℓ. One

can view Z(f1, . . . , fℓ) as the collection of all finite-dimensional representations

of the k-algebra k<x>/(f1, . . . , fℓ). In particular, this observation immediately

suggests that zero sets of noncommutative polynomials share a close connection

with ideals in k<x>.

For every n ∈ N let PIn denote the ideal in k<x> of all polynomials that

are constantly zero on Mn(k)
d (i.e., d-variate polynomial identities for n × n

matrices). The first result about vanishing on Z(f1, . . . , fℓ) is a consequence of

Amitsur’s Nullstellensatz [Ami57].

Theorem 2.1 (Amitsur). If Z(f1, . . . , fℓ) ⊆ Z(g) then for every n ∈ N there

exists r ∈ N such that gr ∈ (f1, . . . , fℓ) + PIn.

Theorem 2.1 is an immediate consequence of [Ami57, Theorem 1], which em-

ploys the results on central simple algebras and polynomial identities. Let us

comment on the two aspects of Theorem 2.1. Firstly, its statement is not an equiv-

alence. For example, let f1 = x2
1 and g = x1. Then g2 ∈ (f1) but Z(f1) ̸⊆ Z(g)

(due to 2-nilpotent matrices). Secondly, Theorem 2.1 is not fully in the spirit

of this survey, in the sense that its algebraic part still requires a quantifier re-

ferring to matrix sizes. Namely, one might optimistically hope for a statement

of the form “Z(f1, . . . , fℓ) ⊆ Z(g) if and only if g ∈ (f1, . . . , fℓ)” to be true.

However, this assertion is false in general. A fundamental obstacle is that a (non-

constant) noncommutative polynomial might simply not have any matrix zeros.

For example, let f1 = 1 − [x1, x2] and g = 1 (here, [a, b] = ab − ba is the ad-

ditive commutator). Then Z(f1) = ∅ (note that tr(I − [X1, X2]) = tr(I) ̸= 0

since chark = 0). In particular, Z(f1) ⊆ Z(g) but 1 /∈ (f1). Section 6 below

speculates about a possible way around this issue.
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Nevertheless, the aforementioned optimistic assertion is valid for certain fami-

lies of constraints f1, . . . , fℓ; let us present two of them. The next result strength-

ens Theorem 2.1 under the assumption that f1, . . . , fℓ are homogeneous with

respect to the natural grading of k<x>.

Theorem 2.2 (Salomon-Shalit-Shamovich). Suppose f1, . . . , fℓ be homogeneous.

Then Z(f1, . . . , fℓ) ⊆ Z(g) if and only if g ∈ (f1, . . . , fℓ).

See [SSS18, Theorem 7.3] for the original statement. Its language and proof

have a somewhat analytic style; let us rephrase the argument for the nontrivial

implication in Theorem 2.2, and slightly strengthen it. Suppose g /∈ (f1, . . . , fℓ),

and let J denote the ideal in k<x> generated by products of variables in x of

length deg g + 1. By homogeneity of fj, it follows that g /∈ (f1, . . . , fℓ) + J .

Therefore the image of g under the canonical quotient homomorphism

k<x> → k<x>
/(

(f1, . . . , fℓ) + J
)

is nonzero. Note that the unital algebra k<x>
/(

(f1, . . . , fℓ) + J
)
is finite-

dimensional and generated by nilpotents. More precisely, by considering its left-

regular representation, we can view it as a unital subalgebra of MN(k) with

N =
∑deg g

i=0 di = ddeg g+1−1
d−1

, generated by jointly nilpotent matrices X1, . . . , Xd of

nilpotency order at most deg g + 1. That is, every product of deg g + 1 factors

from {X1, . . . , Xd} equals zero. Then fj(X) = 0 for all j, and g(X) ̸= 0.

The conclusion of Theorem 2.2 also holds for certain non-homogeneous ideals,

which are called rationally resolvable [KVV17]. The notion of a rationally re-

solvable ideal is somewhat technical; roughly speaking, an ideal J in k<x> is

rationally resolvable if one can split x into two groups, and variables in the sec-

ond group can be expressed as rational expressions in variables of the first group

modulo J . Without stating an exact definition, let us give three examples of

rationally resolvable ideals.

(1) Let d ≥ 3, and let f ∈ k<x> be a nonconstant polynomial in variables

x1, . . . , xd−2 only. Then the ideal (xd−1xd − f) ⊂ k<x> is rationally

resolvable [KVV17, Lemma 4.3].

(2) Let w1, w2, ̸= 1 be two products of variables in x such that w1 and w2

do not start or end with the same variable, and a distinguished variable

appears exactly once in w1 and does not appear in w2. Then (w1 −w2) ∈
k<x> is rationally resolvable [KVV17, Example 2.7].

(3) Let d = 2m2 for some m ∈ N, and denote the variables of x as xij, yij for

1 ≤ i, j ≤ m. Consider the m×m matrices X = (xij)i,j and Y = (yij)i,j.
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Then the ideal in k<x> generated by the entries of XY−Im and YX−Im
is rationally resolvable.

For rationally resolvable constraints f1, . . . , fℓ, the conclusion of Theorem 2.2

holds without the homogeneity assumption.

Theorem 2.3 (Klep-Vinnikov-Volčič). Suppose f1, . . . , fℓ ∈ k<x> generate a

rationally resolvable ideal (e.g. one the aforementioned). Then Z(f1, . . . , fℓ) ⊆
Z(g) if and only if g ∈ (f1, . . . , fℓ).

See [KVV17, Theorem 2.5 and Proposition 2.6] for the proof, which relies

on the existence of the universal skew field of fractions of k<x>, the so-called

noncommutative rational functions, and their matrix evaluations.

3. Directional zeros

In this section we consider a one-sided type of zeros. Given f1, . . . , fℓ ∈ k<x>

let

Zdir(f1, . . . , fℓ) =
⋃
n∈N

{
(X, v) ∈ Mn(k)

d × k
n : fj(X)v = 0 ∀j

}
,

and let L (f1, . . . , fℓ) denote the left one-sided ideal in k<x> generated by

f1, . . . , fℓ. While the zero set Z(f1, . . . , fℓ) from Section 2 has a clear ring-

theoretic aspect (in terms of finite-dimensional representations of a quotient ring),

the set Zdir(f1, . . . , fℓ), often referred to as directional zeros of f1, . . . , fℓ, per-

tains for example to positivity on analytic noncommutative varieties [HMP07]

and inner-outer factorization of noncommutative functions [JMS21]. The exact

correspondence between directional zeros and left ideals is captured by Bergman’s

Nullstellensatz [HM04].

Theorem 3.1 (Bergman). Zdir(f1, . . . , fℓ) ⊆ Zdir(g) if and only if g ∈ L (f1, . . . , fℓ).

See [HM04, Theorem 6.3] or [HMP07, Theorem 3] for the proof, following

a technique that is often referred to as the truncated Gelfand-Naimark-Segal

construction. Let us outline this argument, to observe similarities with the proof

of Theorem 2.2. Only the forward implication in Theorem 3.1 is nontrivial.

Suppose g /∈ L (f1, . . . , fℓ). For δ = max{deg g, deg f1, . . . , deg fℓ}, let Vδ and

Vδ+1 be the images of the subspaces of noncommutative polynomials of degree at

most δ and δ + 1, respectively, under the quotient homomorphism of left k<x>-

modules

q : k<x> → k<x>
/
L (f1, . . . , fℓ).
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Note that Vδ ⊆ Vδ+1 are finite-dimensional spaces. Let π : Vδ+1 → Vδ be any

projection, and consider (well-defined) linear maps X1, . . . , Xd : Vδ → Vδ given by

Xiq(f) = π(q(xif)) for f ∈ k<x> with deg f ≤ δ. Observe that f(X)q(1) = q(f)

for f ∈ k<x> with deg f ≤ δ. In particular, fj(X)q(1) = 0 for all j, and

g(X)q(1) ̸= 0.

Theorem 3.1 can be seen as an algebraic certificate for inclusion of joint ker-

nels of matricial values of noncommutative polynomials. With this in mind, it

is also natural to ask if there is an analogous certificate for inclusion of joint

invariant subspaces of matricial values of noncommutative polynomials. While

such a statement might not be directly considered a Nullstellensatz like the other

theorems in this survey (though one could argue that joint invariant subspaces

correspond to zeros in a suitable exterior product), it would certainly adhere to

the same geometric perspective on noncommutative polynomials. In particular,

one may consider the following assertion.

Conjecture 3.2. For f1, . . . , fℓ, g ∈ k<x>, the following are equivalent:

(i) for all n ∈ N and X ∈ Mn(k)
d, joint invariant subspaces for f1(X), . . . , fℓ(X)

are invariant for g(X);

(ii) g belongs to the unital k-algebra generated by f1, . . . , fℓ.

Conjecture 3.2 is true at least for ℓ = 1, where one can further restrict to

1-dimensional invariant subspaces (i.e., eigenvectors).

Proposition 3.3. Let f, g ∈ k<x>. Then f ∈ k[g] if and only if for all n ∈ N
and X ∈ Mn(k)

d, eigenvectors of f(X) are eigenvectors of g(X).

Proof. Only (⇐) is nontrivial. Suppose eigenvectors of f(X) are eigenvectors of

g(X), for all matrix tuples X. If f is constant, then g is likewise constant. Thus

we can assume that f is nonconstant. Given n ∈ N let On ⊆ Mn(k)
d denote

the set of all X such that f(X) has n distinct eigenvalues. By [BV24, Corollary

2.10] (or [K-BRZ23, Proposition 1.7]), On is nonempty for all large enough n ∈ N.
Since On is Zariski open, it is therefore Zariski dense in Mn(k)

d for such n. By the

assumption we have f(X)g(X) = g(X)f(X) for all X ∈ On. Zariski denseness

then implies that f(X)g(X) = g(X)f(X) for all X ∈ Mn(k)
d and large enough

n ∈ N. As no nonzero polynomial is constantly zero on matrix tuples of arbitrary

large sizes (see e.g. [Row80, Lemma 1.4.3]), it follows that fg = gf in k<x>.

By Bergman’s centralizer theorem [Ber69, Theorem 5.3] there exist h ∈ k<x>

and p1, p2 ∈ k[t] such that f = p1(h) and g = p2(h).
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For n ∈ N let Λn ⊆ k denote the set of eigenvalues attained by h on Mn(k)
d. By

Chevalley’s theorem [Har92, Theorem 3.16], Λn is a constructible set in k (since it

is the projection of the algebraic set {(λ,X) ∈ k×Mn(k)
d : det(λI−h(X)) = 0}).

Therefore Λn is either finite or cofinite in k. If Λn is finite, then there is λ ∈ Λn

such that h(X)−λI is singular for all X in a Zariski dense subset of Mn(k)
d, and

consequently h(X)−λI = 0 for all X ∈ Mn(k)
d by [Row80, Theorem 3.2.6]. Thus

if Λn were finite for all n ∈ N, the noncommutative polynomial h would be central

in k<x> and therefore constant, which is not the case (as f is nonconstant). Thus

let n ∈ N be such that Λn is cofinite in k. Assume p2 /∈ k[p1]. By [FM69, Theorem

2.3] there exist λ, µ ∈ Λn such that p1(λ) = p1(µ) and p2(λ) ̸= p2(µ). Let X, Y ∈
Mn(k)

d be such that h(X)u = λu and h(Y )v = µv for some nonzero u, v ∈ k
n.

Then ( u
v ) ∈ k

2n is an eigenvector of (p1(h))(X) ⊕ (p1(h))(Y ) = f(X ⊕ Y ), but

not of (p2(h))(X)⊕ (p2(h))(Y ) = g(X ⊕ Y ), which is a contradiction. Therefore

p2 ∈ k[p1], and so g ∈ k[f ]. □

For an alternative geometric counterpart of noncommutative polynomial com-

position in terms of eigenlevel sets, see [Vol20, Corollary 4.1].

4. Determinantal zeros

Directional zeros from Section 3 capture a lot of structure (which is the reason

behind the neat form of Theorem 3.1); however, sometimes one would like to be

able to draw conclusions based on less information. Given f1, . . . , fℓ ∈ k<x> let

Zdet(f1, . . . , fℓ) =
⋃
n∈N

{
X ∈ Mn(k)

d : det fj(X) = 0 ∀j
}
.

Note that the determinantal zeros Zdet(f1, . . . , fℓ) are the projection of direc-

tional zeros Zdir(f1, . . . , fℓ) onto the first component. The motivation behind

determinantal zeros comes from noncommutative inequalities. To see this, for a

moment assume that f ∈ C<x> is self-adjoint (i.e., f is fixed by the canonical

skew-linear involution on C<x> that fixes the generators). The solution set of a

dimension-free matrix inequality

D(f) =
⋃
n∈N

{
X ∈ Mn(C)d : Xi = X∗

i , f(X) is positive semidefinite
}

is called a free semialgebraic set [HKM13]; they emerge in control theory, matrix

convexity and quantum information theory. Note that at a boundary point of

D(f), the value of f is singular (since at least one eigenvalue changes sign); so

one can thus view Zdet(f) as the “Zariski closure” of D(f). Often, understanding
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Zdet(f) (a collection of determinantal hypersurfaces) suffices for deducing features

of D(f).

A simple observation Zdet(f1f2) = Zdet(f1) ∪ Zdet(f2) indicates that determi-

nantal zeros relate to factorization in the free algebra [Coh06]. Clearly, every

f ∈ k<x> can be written as a finite product of irreducible factors in k<x>.

However, such a factorization might not be unique; for example, x1(x2x1 + 1) =

(x1x2+1)x1. This issue is roughly due to the fact that there are not many invert-

ible elements in k<x>. To ameliorate this, one says that f, g ∈ k<x> are stably

associated [Coh06, Section 0.5] if
(
f 0
0 1

)
= P

(
g 0
0 1

)
Q for some P,Q ∈ GL2(k<x>).

For example, x1x2 + 1 and x2x1 + 1 are stably associated because(
x1x2 + 1 0

0 1

)
=

(
x1 1 + x1x2

−1 −x2

)(
x2x1 + 1 0

0 1

)(
−x2 −1

1 + x1x2 x1

)
.

Notice that Zdir(f) = Zdir(g) for stably associated f and g. By [Coh06, Propo-

sition 3.2.9], irreducible factors in a complete factorization of a noncommutative

polynomial are unique up to stable associativity. With this notion at hand, one

obtains the following correspondence between determinantal zeros and factoriza-

tion in the free algebra.

Theorem 4.1 (Helton-Klep-Volčič). Zdet(f1, . . . , fℓ) ⊆ Zdet(g) if and only if

for some j ∈ {1, . . . , ℓ}, every irreducible factor of fj is stably associated to an

irreducible factor of g.

Theorem 4.1 reduces to the case ℓ = 1 after observing that Zdet(f1, . . . , fℓ) ⊆
Zdet(g) implies Zdet(fj) ⊆ Zdet(g) for some j [HKV22, Proposition 2.14]. This

might seem counter-intuitive at first, and it is due to determinantal zeros being

ubiquitous in a certain sense. After this reduction, the proof of Theorem 4.1 is

given in [HKV22, Theorem 2.12], building upon earlier work in [HKV18]. The

proof differs prominently from those in Sections 2 and 3. On one hand, its frame-

work relies on linearization of matrices over the free algebra, and its interplay

with factorization. On the other hand, the proof combines results from invariant

and representation theory associated with the actions of GLn(k) on Mn(k)
d by

simultaneous conjugation and the action of SLn(k)×SLn(k) on Mn(k)
d by simul-

taneous left-right multiplication, with ampliation techniques from free analysis.

5. Tracial and weak zeros

This section concerns vanishing of linear functionals on images of noncom-

mutative polynomials, which gives it a slight operator-algebraic flavor. For
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f1, . . . , fℓ ∈ k<x> let

Ztr(f1, . . . , fℓ) =
⋃
n∈N

{
X ∈ Mn(k)

d : tr fj(X) = 0 ∀j
}
.

When considering the above tracial zeros, one begins by noticing that if f ∈
k<x> is a sum of commutators in k<x>, then tr f(X) = 0 for all matrix tuples

X. The converse is also true [BK11, Corollary 4.7], which is established using

multilinearization and the structure of Lie ideals in Mn(k). Thus when looking

for algebraic certificates of tracial zero inclusions, one should seek for relations

between noncommutative polynomials that are satisfied “up to adding commu-

tators”. In particular, the following Nullstellensatz is given in [KS14, Theorem

3.1].

Theorem 5.1 (Klep-Špenko). Ztr(f1, . . . , fℓ) ⊆ Ztr(g) if and only if 1 or g is a

linear combination of f1, . . . , fℓ and commutators in k<x>.

While Theorem 5.1 seemingly consists of two separate cases, Ztr(f1, . . . , fℓ) = ∅
and Ztr(f1, . . . , fℓ) ̸= ∅, the proof of [KS14, Theorem 3.1] reduces the latter

one to the former one. The core arguments of [KS14] then utilize bounds on

trace identities provided by invariant theory, together with the characterization

of trace-zero noncommutative polynomials as sums of commutators [BK11].

Apart from commutators (indispensable when considering tracial zeros), the

other component of Theorem 5.1 is linear dependence. One can also explore it

separately; [BK13, Theorem 3.7] establishes a local-global principle for linear de-

pendence in the free algebra. Namely, f1, . . . , fℓ ∈ k<x> are linearly dependent if

and only if for all n ∈ N, X ∈ Mn(k)
d and v ∈ k

n, the vectors f1(X)v, . . . , fℓ(X)v

are linearly independent. The proof of [BK13, Theorem 3.7] combines a charac-

terization of linear dependence based on vanishing of Capelli’s polynomial, and a

rank constraint on locally linearly dependent operators. As observed in [Cim18],

this local-global linear dependence principle can be interpreted as a Nullstellen-

satz. Let

Zw(f1, . . . , fℓ) =
⋃
n∈N

{
(X, u, v) ∈ Mn(k)

d × k
n × k

n : utfj(X)v = 0 ∀j
}

be the set of weak zeros of f1, . . . , fℓ ∈ k<x> (named in analogy with the weak

topology in functional analysis). Then one obtains the following.

Theorem 5.2 (Brešar-Klep; Cimprič). Zw(f1, . . . , fℓ) ⊆ Zw(g) if and only if g

is a linear combination of f1, . . . , fℓ.
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The following argument for Theorem 5.2 is due to Cimprič, given in the context

of partial differential operators [Cim18]. It suffices to assume that f1, . . . , fℓ are

linearly independent. If Zw(f1, . . . , fℓ) ⊆ Zw(g), then for all n ∈ N, X ∈ Mn(k)
d

and v ∈ k
n, the complement of the span of f1(X)v, . . . , fℓ(X)v is contained in

the complement of g(X)v (here, the complements are considered relative to the

standard bilinear form k
n × k

n → k). Therefore f1(X)v, . . . , fℓ(X)v, g(X)v are

linearly dependent for every X and v. By [BK13, Theorem 3.7], it follows that

f1, . . . , fℓ, g are linearly dependent, so g belongs to the span of f1, . . . , fℓ.

6. Low-rank values

As observed in Section 2, (nonconstant) noncommutative polynomials might

not have any matricial zeros, which is an essential barrier to obtaining an exact

correspondence between matricial zero sets of noncommutative polynomials and

ideals in the free algebra. For example, f = 1 − [x1, x2] does not have matricial

zeros. Nevertheless, f can attain low-rank values on matrix tuples. Concretely,

for every n ∈ N consider the pair of n× n matrices

(1) Xn =



0 1 0

0 1
. . .

. . . . . . 0
. . . 1

0


, Yn =


0

1 0

0 2
. . .

. . . . . . . . .

0 n− 1 0

 .

A direct calculation shows that rk f(Xn, Yn) = 1 for all n ∈ N. In particular,

while f does not have matricial zeros, the relative rank 1
n
rk f(X) for X ∈ Mn(k)

2

can be arbitrarily small. The pair of matrices (1) is constructed by looking at the

canonical representation of the Weyl algebra on C[t], where x1 acts as multipli-

cation by t and x2 acts as differentiation with respect to t, and then truncating

compressing these operators to polynomials of degree at most n− 1. With such

examples (and a previous investigation of noncommutative polynomial zeros in

algebraically closed skew fields [M-L85]) in mind, Makar-Limanov proposed1 the

following statement.

Conjecture 6.1 (Makar-Limanov). If f ∈ k<x> \k then

inf
n∈N

min rk f
(
Mn(k)

d
)

n
= 0.

1Per author’s account, during a talk in Advances in Noncommutative Algebra and Repre-

sentation Theory at Bar-Ilan University in 2017; but likely also on prior occasions.
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Let us look at another example. The noncommutative polynomial f = 1 −
[x1, [x1, x2]

2] is constantly equal to the identity matrix on all pairs of 1 × 1 and

2× 2 matrices (note that [X1, X2]
2 = − det([X1, X2])I for X ∈ M2(k)

2). On the

other hand, for

X3 =

0 −2 0
1
6

0 −4

0 1
6

0

 , Y3 =

0 3 0
1
4

0 0

0 0 3
2


and

X4 =


0 1 1 0
5
9

0 −5
3

−1

0 2
15

0 −1
5

0 0 −5
3

0

 , Y4 =


0 −6

5
21
2

0

0 0 −10 3
2

1
3

1
5

0 3
10

0 0 5
2

2


one has rk f(X3, Y3) = rk f(X4, Y4) = 1. There is no refined construction be-

hind these two pairs of matrices; they were obtained by solving the system of

polynomial equations f(Xn, Yn) = nEnn (where Enn is a standard matrix unit)

using Gröbner bases and some ad hoc reductions. While presenting scarce evi-

dence, this example nevertheless suggests a strengthening of Conjecture 6.1: for

f ∈ k<x>, is it true that min rk f(Mn(k)
d) ≤ 1 if f is not constant on Mn(k)

d?

This question is possibly more amenable to refutation than Conjecture 6.1. Be

that as it may, a positive resolution of Conjecture 6.1 would indicate that low-rank

values of noncommutative polynomials might be a suitable concept for develop-

ing algebraic geometry of noncommutative polynomials on matrices of arbitrary

sizes that corresponds to two-sided ideals in k<x>. Namely, one might go further

than Conjecture 6.1 and ask whether the following assertion is true.

Conjecture 6.2. For f1, . . . , fℓ, g ∈ k<x>, the following are equivalent:

(i) there is K ∈ N such that for all n ∈ N and X ∈ Mn(k)
d,

rk g(X) ≤ K ·max{rk f1(X), . . . , rk fℓ(X)};

(ii) g ∈ (f1, . . . , fℓ).

The implication (ii)⇒(i) is straightforward: if g is a sum of K terms of the

form pfjq for p, q ∈ k<x>, then (ii) holds by elementary rank estimates. To

approach the converse, it is first necessary to develop a better understanding of

low-rank values of noncommutative polynomials, and substantiate their relative

abundance.
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