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Abstract. This paper investigates the interplay between local and global equiva-

lences on noncommutative polynomials, the elements of the free algebra. When the

latter are viewed as functions in several matrix variables, a local equivalence of non-

commutative polynomials refers to their values sharing a common feature point-wise

on matrix tuples of all dimensions, such as rank-equivalence (values have the same

ranks), isospectrality (values have the same spectrum), and pointwise similarity (val-

ues are similar). On the other hand, a global equivalence refears to a ring-theoretic

relation within the free algebra, such as stable association or (elementary) intertwined-

ness. this paper identifies the most ubiquitous pairs of local and global equivalences.

Namely, rank-equivalence coincides with stable association, isospectrality coincides

with both intertwinedness and transitive closure of elementary intertwinedness, and

pointwise similarity coincides with equality. Using these characterizations, further

results on spectral radii and norms of values of noncommutative polynomials are de-

rived.
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1. Introduction

The free algebra k<x> = k<x1, . . . , xn> over a field k is, in many ways, a good
noncommutative generalization of the polynomial ring. The algebraic properties of
the free algebra and, more generally, free ideal rings were extensively studied by Cohn
[14], Amitsur (see, for example, [2, 3]), and others (see, for example, [8, 18, 39]). The
main goal of this paper is to study the algebraic properties through a more geometric
and analytic approach that originates in noncommutative analysis. Broadly speaking,
noncommutative analysis is an area of analysis dealing with operator algebras and
related concepts. Recently, a fruitful approach to operator algebras (both self-adjoint
and not) was to view them as functions on the space of their representations. This
idea is, of course, not new and goes back to Gelfand. In the theory of C∗-algebras,
noncommutative functions first appeared in the work of Takesaki [40] that was extended
by Bichteler [9]. More recently, this point of view was enhanced and applied to the
study of operator systems and noncommutative convexity by Davidson and Kennedy
[15]. For our purposes here, it suffices to consider noncommutative functions on the
noncommutative affine space. Let

Mn =
⋃
k∈N

Mk(k)
n

be the set of all n-tuples of square matrices over k. This space, clearly, parametrizes
all finite-dimensional representations of k<x>. An element f ∈ k<x> gives rise to
a function on Mn that takes values in M1. Moreover, f satisfies the following three
properties:

• For all k ∈ N, f(Mk(k)
n) ⊆ Mk(k);

• For all X ∈ Mk(k)
n and Y ∈ Mℓ(k)

n, define

X ⊕ Y =

((
X1 0
0 Y1

)
, . . . ,

(
Xn 0
0 Yn

))
∈ Mk+ℓ(k)

n.

Then, f(X ⊕ Y ) = f(X)⊕ f(Y ).
• For all X ∈ Mk(k)

n and all S ∈ GLk(k), define

S−1XS =
(
S−1X1S, . . . , S

−1XnS
)
∈ Mk(k)

n.

Then, f(S−1XS) = S−1f(X)S.

These properties in the case of elements of k<x> simply encode the behavior of repre-
sentations. However, these properties (for k = C) were introduced by Taylor to create
algebras of functions that may give rise to functional calculus for general tuples of oper-
ators [41, 43] (see also [31, 32]). Taylor’s work was greatly developed in recent years by
many researchers (see the books [1, 6, 26]). Moreover, Popescu has developed a notion
of a noncommutative function that arose naturally from his study of dilation theory and
operator algebras generated by row isometries (see, for example, [34, 35]). Popescu’s
theory fits nicely into the framework of noncommutative analysis (see [23, 24, 37, 38]
for examples of applications). In all this theory, the free algebra plays a role similar to
that of the polynomial ring in the theory of analytic functions. Therefore, we will call



POINTWISE EQUIVALENCES OF NC POLYNOMIALS 3

elements of k<x> noncommutative polynomials or simply polynomials, if there can be
no confusion.

Another natural area of applications of noncommutative functions is free probability.
In fact, Voiculescu has independently discovered noncommutative functions [45, 46, 47].
One of the main reasons was the study of operator-valued free probability. One of
Voiculescu’s key results is a free version of a central limit theorem [44]. Roughly speak-
ing, the result says that the limit of the expected value of the trace of a noncommutative
polynomial in independent GUE matrices converges to the trace of the polynomial ap-
plied to free semicirculars as the size of the matrices tends to infinity. This result
was extended by Haagerup and Thorbjørnsen [19] to almost everywhere convergence of
norms. Later, this result was extended to noncommutative rational functions (elements
of the free skew field) by Mai, Speicher, and Yin [33], and the ranks of their evaluations
were used to investigate unavoidable atoms in noncommutative distributions in [4].

From a more geometric point of view, one can consider various types of varieties in
Mn and its subdomains. In [21] and [20], Helton, Klep, and the second author have
studied determinantal varieties. Namely, given f ∈ k<x>, one can define Z(f) =
{X ∈ Mn | det f(X) = 0}. The authors proved that for f, g ∈ k<x>, if Z(f) = Z(g),
then they admit factorization f = f1 · · · fk and g = g1 · · · gk in k<x>, such that for
each 1 ≤ i ≤ k, there exists 1 ≤ j ≤ k, such that fi and gj are stably associated.
Cohn introduced stable association to study the problem of factorizations in k<x>.
We say that two polynomials f, g ∈ k<x> are stably associated, if there exist P,Q ∈
GL2(k<x>), such that (

g 0
0 1

)
= P

(
f 0
0 1

)
Q.

Another type of noncommutative varieties is the “hard zeroes” varieties. Namely, for
f ∈ k<x>, we consider the collection of points where f vanishes in the strong sense. In
[37], such varieties were studied in the unit ball as geometric invariants to classify certain
operator algebras arising from noncommutative interpolation. Varieties of hard zeroes
naturally correspond to two-sided ideals. A homogeneous Nullstellensatz was obtained
in [37]. Lastly, one can consider directional varieties, which naturally correspond to
left (or right) ideals. A natural Nullstellensatz is the so-called Bergman Nullstellensatz
[22]. Similar varieties appear in the analytic context to study factorizations in the free
semigroup algebra [25].

The goal of this paper is to study certain relations between polynomials described
in terms of their values on Mn. Throughout the paper, we assume that the field k is
algebraically closed of characteristic 0. We say that noncommutative polynomials f, g
are:

(i) rank-equivalent if rk f(X) = rk g(X) for all X ∈ Mn;
(ii) isospectral if the eigenvalues of f(X) and g(X) coincide for all X ∈ Mn;
(iii) pointwise similar if the matrices f(X) and g(X) are similar for all X ∈ Mn;
(iv) (k = C) pointwise the same norm ∥ · ∥ if ∥f(X)∥ = ∥g(X)∥ for all X ∈ Mn.
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Note that the first condition can be thought of as the condition on classical analytic
functions to have the same zeroes of the same order. The first condition is also related
to the more general study of rank-stability of noncommutative polynomial equations
[7, 17]. The second condition is, in a sense, generic similarity. The second condition first
appeared in [48], where a noncommutative version of Bertini’s theorem from algebraic
geometry was obtained. The third condition is, of course, stronger than the second one.
In fact, such questions arise from time to time in noncommutative analysis. Namely,
given two elements of an operator algebra and a collection of representations that
separate points, can we deduce that the two elements are similar or unitarily equivalent
in the algebra, if their images under each one of our representations are similar or
unitarily equivalent, respectively? Lastly, the last condition is metric. It is analogous to
two analytic functions having the same modulus. It is well known that in this case, the
two analytic functions differ by a multiplication by a unimodular scalar. Surprisingly,
this is also true for noncommutative polynomials, as we will see.

As we have seen, Taylor introduced noncommutative functions to study a notion
of joint spectrum and functional calculus for arbitrary tuples of operators on a Ba-
nach/Hilbert space. Taylor’s definition of the joint spectrum has some drawbacks,
however. Firstly, it deals with categories of Fréchet modules over certain topological
algebras, and Taylor builds a sophisticated cohomological machinery to deal with these
categories [42]. Secondly, both in the case of commuting operators and the case of an
arbitrary tuple of matrices, the spectrum and the functional calculus do not work as
desired (see also [31]). A more naive approach is to study the singularity loci of pencils
in order to understand the “joint spectrum”. Namely, one can think of the spectrum of
an operator T as the singularities in the complex plane of the analytic operator-valued
function z 7→ (zI − T )−1. Homogenizing we get the function (zI − wT )−1. More gen-
erally, the projective spectrum of a tuple of operators was considered by Yang and his
collaborators [13, 50]. From the noncommutative analysis perspective, a natural notion
of the joint spectrum of a tuple of matrices A1, . . . , An ∈ Mk(C) is the singularity set
of the pencil I −

∑n
j=1 xjAj or its homogenization x0I −

∑n
j=1 xjAj. The latter relates

to the noncommutative projective space that appeared first in the work of Voiculescu
[47] and was recently used to solve a joint similarity problem for tuples of matrices by
Derksen, Klep, Makam, and the second author [16]. The former relates to the domains
of definition of noncommutative rational functions and was studied in [29]. More re-
cently, realizations with operator coefficients were introduced by Augat, Martin, and
the first author in [5]. Therefore, understanding the local behaviour of noncommutative
polynomials and pencils on Mn is a natural first step in the study of joint spectra of
arbitrary tuples of operators.

The following example lists some non-trivial instances of our relations.

Example 1.1. Polynomials f1 = xy+ 1 and g1 = yx+ 1 are both rank-equivalent and
isospectral, but not pointwise similar:

f1

((
1 0
0 0

)
,

(
0 1
0 0

))
=

(
1 1
0 1

)
, g1

((
1 0
0 0

)
,

(
0 1
0 0

))
=

(
1 0
0 1

)
.
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Polynomials f2 = xy and g2 = yx are isospectral, but not rank-equivalent:

f2

((
1 0
0 0

)
,

(
0 1
0 0

))
=

(
0 1
0 0

)
, g2

((
1 0
0 0

)
,

(
0 1
0 0

))
=

(
0 0
0 0

)
.

Polynomials f3 = xyxy + xy + x and g3 = xy2x + xy + x are rank-equivalent, but not
isospectral:

f3

((
1 0
0 0

)
,

(
0 1
1 0

))
=

(
1 1
0 0

)
, g3

((
1 0
0 0

)
,

(
0 1
1 0

))
=

(
2 1
0 0

)
.

The claimed relations may be verified using elementary means; from the perspective
of this paper, they are consequences of relations f1x = xg1, f2x = xg2, f3(yx + 1) =
(xy + 1)g3 and Theorems 1.2, 2.1 below.

We say that two polynomials f, g ∈ k<x> are intertwined if there exists a nonzero
a ∈ k<x> such that fa = ag. This relation first appeared in [48]. The main result of
this paper is the following theorem. Note that the reverse implications in the statement
are trivial.

Theorem 1.2. Let f, g be noncommutative polynomials.

(i) f and g are rank-equivalent if and only if they are stably associated (Theorem
3.4).

(ii) f and g are isospectral if and only if they are intertwined (Theorem 4.1).
(iii) f and g are pointwise similar if and only if they are equal (Theorem 5.6).
(iv) f and g have pointwise the same operator/Frobenius norm if and only if they

are equal up to scaling by a constant of modulus 1 (Theorem 6.3).

While Theorem 1.2 sums up the main contributions of the paper, we also provide
additional insight into these local equivalences through examples, counterexamples,
and their finer features. Two problems are left open. We say that f and g are operator
isospectral if f(X) has the same spectrum as g(X) for every tuple X ∈ B(H)n, where
H is a separable Hilbert space. In Examples 4.5 and 4.7, we show that this relation is
neither isospectrality nor equality. It would be interesting to understand this relation
algebraically. Another intriguing question is to extend some of these results to certain
operator algebras. For example, it stands to reason that Theorem 1.2(iv) may admit
a generalization to algebras of noncommutative functions on operator space balls or
more general matrix convex sets. Furthermore, the ring of germs of noncommutative
functions was shown to be a semifir (semi-free ideal ring) by Klep, Vinnikov, and the
second author [28], meaning that it admits a well-behaved factorization theory, which
is one of the main tools in this paper. It would be interesting to see whether the results
on isospectrality and stable association can be extended to this ring.

2. Preliminaries on factorization of noncommutative polynomials

This paper relies heavily on the profound and comprehensive theory of factorization
in free algebras (and related rings), of which P. M. Cohn was the chief architect [14]. In
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this section, we review some of the concepts and results from the factorization theory
that are regularly applied throughout the paper.

Let k be an algebraically closed field of characteristic 0,1 and let x1, . . . , xn be freely
noncommuting variables. Let k<x> be the free associative k-algebra generated by
x1, . . . , xn. Throughout the paper (especially within the proofs), we regularly denote
R = k<x>. Its elements are called noncommutative polynomials. We typically write
x1 = x and x2 = y in examples with two variables. This paper revolves around
matrix (and sometimes operator) evaluations of noncommutative polynomials. If X =
(X1, . . . , Xn) ∈ Mk(k)

n, then f(X) ∈ Mk(k) is obtained in a natural way, by replacing
the xj in f by Xj (and the constant term with the corresponding scalar multiple of the
identity matrix).

Two polynomials f, g ∈ k<x> are stably associated [14, Section 0.5] if there exist
P,Q ∈ GL2(k<x>) such that g⊕1 = P (f⊕1)Q. This notion makes up for the fact that
the usual association is very restrictive because there are no invertible elements in k<x>
besides constants; as there is a plethora of invertible 2×2 matrices over the free algebra,
stable association is more flexible. More generally, F ∈ k<x>d×d and G ∈ k<x>e×e

are stably associated if there exist P,Q ∈ GLd+e(k<x>) such that G ⊕ Id = P (F ⊕
Ie)Q. Observe that stably associated polynomials are clearly rank-equivalent. Stable
association is indispensable for investigating factorization in k<x>. For example, while
a complete factorization of a noncommutative polynomial is not unique in the strict
sense (e.g., x(yx+1) = (xy+1)x), it is known that a complete factorization is unique up
to permutation and stable association of the irreducible factors [14, Proposition 3.2.9].

Next, f, g ∈ k<x> are right/left coprime if they do not have a nonconstant common
right/left factor in k<x>, and they are right/left comaximal if the right/left ideal in
k<x> generated by them equals k<x>. A relation fa = bg in k<x> is coprime if f, b
are left coprime and a, g are right coprime, and comaximal if f, b are right comaximal
and a, g are left comaximal. By [14, Corollary 3.1.4], a relation in k<x> is coprime if
and only if it is comaximal, which we regularly use in this paper.

Theorem 2.1. [14, Corollary 0.5.5, Proposition 0.5.6 and Corollary 3.1.4] The following
are equivalent for f, g ∈ k<x>:

(i) f and g are stably associated;
(ii) the left k<x>-modules k<x>/k<x> ·f and k<x>/k<x> ·g are isomorphic;
(iii) there is a coprime/comaximal relation fa = bg in k<x>.

Throughout the paper, we interchangeably apply the interpretations of stable asso-
ciation from Theorem 2.1; while the primary definition above is most directly related
to rank equivalence, the others are more convenient in proofs. While not essential to
this paper, let us mention that it is possible to generate all pairs of stably associated
polynomials using continuant polynomials [14, Section 2.7].

1We are mainly interested in k = C; some of the statements likely remain valid for more general

fields.
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Let a ∈ k<x>. The (left) eigenring [14, Section 0.6] of a is

E(a) : = Endk<x>
(
k<x>/k<x> ·a

)
∼= {g ∈ k<x> : fa = ag for some f ∈ k<x>}

/
k<x> ·a.

The structure of eigenrings in a free algebra over an algebraically closed field is well-
understood [14, Section 4.6].

Theorem 2.2. [14, Corollaries 4.6.10 and 4.6.13] Let a ∈ k<x>.

(a) E(a) is a finite-dimensional over k.
(b) If a is irreducible then E(a) = k.

Factorization of homogeneous polynomials is especially simple. The following fact is
well-known to experts in factorization theory and is tacitly used throughout the paper
(e.g., when factorizing the highest-degree homogeneous component of a noncommuta-
tive polynomial).

Proposition 2.3. Stably associated homogeneous noncommutative polynomials differ
only up to a scalar multiple. In a complete factorization of a homogeneous noncommu-
tative polynomial, the irreducible factors are homogeneous and unique up to scaling.

Proof. For the first part, see [14, Exercise 3.1.16] or [20, Remark 4.1]. The second part
then follows from the first part and the characterization of complete factorizations in a
free algebra [14, Proposition 3.2.9]. □

For later use, we record some degree bounds pertaining to coprimeness and comaxi-
mality.

Lemma 2.4. Let f, g ∈ k<x> \k.
(a) If f and g are stably associated, then deg f = deg g, and there is a coprime

relation fa = bg with deg a = deg b < deg f .
(b) If f and g are right comaximal, there exist a, b ∈ k<x> with deg a < deg g and

deg b < deg f such that fa+ gb = 1.

Proof. (a) By [14, Propositions 2.7.4 and 2.7.6] we have deg f = deg g. By Theorem
2.1, there are a, b ∈ R such that fa = bg is a coprime relation. If deg b ≥ deg f , then by
looking at the highest-degree homogeneous components in fa = bg, there exists c ∈ R
such that deg(b − fc) < deg b. Let b′ = b − fc and a′ = a − cg. Clearly, fb′ = a′g is
a coprime relation. Continuing with decreasing the degree in this manner, we obtain
a′′, b′′ ∈ R such that fa′′ = b′′g and deg b′′ < deg f .

(b) Without loss of generality, let deg f ≥ deg g. By [14, Corollary 2.3.9], fR ∩ gR
is a nonzero principal right ideal. By [14, Proposition 2.8.1] and right comaximality of
f, g, there exist m ∈ N, h1, . . . , hm−1 ∈ R \ k, hm ∈ R \ {0} and α ∈ k \ {0} such that

f = αpm(h1, . . . , hm), g = αpm−1(h1, . . . , hm−1),

where pm is the mth continuant polynomial [14, Section 2.7]. By [14, Proposition 2.7.3],
there exist a, b ∈ R with deg a < deg g and deg b < deg f such that fa+ gb = 1. □
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3. Rank equivalence

In this section, we prove that rank-equivalent polynomials are stably associated (The-
orem 3.4). This result is a generalization of [21, Corollary 2.13] for irreducible polyno-
mials, and of [16, Theorem 5.2] for homogeneous linear matrix pencils.

The inner rank rk f of a nonzero d×e matrix f over k<x> is the smallest r ∈ N such
that f = gh for an d× r matrix g and an r× e matrix h over k<x>. Equivalently [14,
Theorem 7.5.13], r is the rank of f as a matrix over the free skew field, the universal
skew field of fractions of k<x> [14, Corollaries 2.5.2 and 7.5.14]. An d× d matrix over
k<x> is full if its inner rank equals d; in particular, every nonzero element of k<x>
is a full 1 × 1 matrix. For convenience, we record the following statement, which is
well-known to experts.

Lemma 3.1. Let f be a nonzero matrix over k<x>. Its inner rank equals

max
k∈N

1

k
max

{
rk f(X) : X ∈ Mk(k)

n
}
.

Proof. Let r be the inner rank of f . Clearly, rk f(X) ≤ kr for every X ∈ Mk(k)
n.

Let f = r ( Ir 0
0 0 ) s where r, s are invertible matrices over the free skew field. By [26,

Proposition 2.1], for some k ∈ N there exists X ∈ Mk(k)
n such that r and s are both

defined and invertible at X. Then

f(X) = r(X)

(
Ikr 0
0 0

)
s(X),

so rk f(X) = kr. □

We start by showing that full matrices over k<x>, which are not stably associated,
attain kernels of distinct dimensions when evaluated on suitable linear operators on an
infinite-dimensional vector space.

Lemma 3.2. Let f and g be full matrices over k<x>. If f and g are not stably as-
sociated, there exists an infinite-dimensional vector space V over k and X1, . . . , Xn ∈
Endk(V ) such that ker f(X) and ker g(X) are finite-dimensional, with different dimen-
sions.

Proof. Consider the category T of left R-modules of the form M(h) := R1×d/R1×dh for
d ∈ N and full h ∈ Rd×d. By [14, Proposition 3.2.1 and Theorem 3.2.3], T is an abelian
category. Furthermore, HomR(M,N) is a finite-dimensional over k for everyM,N ∈ T
by [14, Theorem 5.8.5]. Since f and g are not stably associated, the modules M(f)
and M(g) in T are not isomorphic by [14, Corollary 0.5.5]. Therefore, there exists
V ∈ T such that dimkHomR(M(f), V ) ̸= dimkHomR(M(g), V ) by [10, Theorem].
Let X1, . . . , Xn ∈ Endk(V ) be given by the left action of x1, . . . , xn on V . If e1, . . . , ed
denotes the standard basis of the left R-module R1×d, then for every h ∈ Rd×d, there
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is an isomorphism of k-vector spaces

HomR(M(h), V ) → kerh(X) ⊆ V d, ϕ 7→

ϕ(e1)...
ϕ(ed)

 .

Therefore, dimk ker f(X) ̸= dimk ker g(X). □

The following is a generalization of [49, Lemma 3.1], and our main intermediate step
towards Theorem 3.4. Together with Lemma 3.1, it implies that given a full linear
matrix Λ over k<x>, every rectangular matrix tuple can be completed to a larger
square tuple without increasing the kernel when evaluated at Λ.

Proposition 3.3. Let Λ =
∑n

i=1Aixi ∈ k<x>d×d be a full linear matrix, p ≥ q and
T ∈ (kp×q)n. Denote p̃ = p+ (p− q)(d− 1). Then the p̃d× p̃d affine matrix

L =
∑
i

Ai ⊗

Ti
0

yi11 · · · yi1(p̃−q)
...

. . .
...

yip̃1 · · · yip̃(p̃−q)


in np̃(p̃− q) free variables y = (yiıȷ)i,ı,ȷ has inner rank p̃d− dimkerΛ(T ) over k<y>.

Proof. Clearly, the inner rank of L is at most p̃d − dimkerΛ(T ). By [18, Theorem 1]
it suffices to prove the following: if U ∈ k

p̃d×a and V ∈ k
p̃d×b satisfy U⊤LV = 0, then

rkU + rkV ≤ p̃d+ dimkerΛ(T ).
After a canonical shuffle and with a slight abuse of notation, we write

K =
∑
i

Ti ⊗ Ai, L =
∑
i

Ti
0

yi11 · · · yi1(p−q)
...

...
yip1 · · · yip(p−q)

⊗ Ai.

Let U ∈ k
p̃d×a and V ∈ k

p̃d×b be such that U⊤LV = 0. Denote

U =

U1
...
Up̃

 , U0 =

U1
...
Up

 , V =

V1...
Vp̃

 , V0 =

V1...
Vq


where Uk ∈ k

d×a and Vk ∈ k
d×b for k ≥ 1. In terms of these blocks, the equation

U⊤LV = 0 is equivalent to

U⊤
0 KV0 = 0,(1)

U⊤
k ΛVℓ = 0 for 1 ≤ k ≤ p̃, q + 1 ≤ ℓ ≤ p̃.(2)

Since Λ is full,

(3) rk
(
U1 · · · Up̃

)
+ rk

(
Vq+1 · · · Vp̃

)
≤ d
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by (2) and [14, Proposition 3.1.2] (or [18, Theorem 1]). Denote r = rk ( Vq+1 ··· Vp̃ ).
Next, we distinguish two complementary cases.
(First case) Suppose

(4) rk
(
Up+1 · · · Up̃

)
+ rk

(
Vq+1 · · · Vp̃

)
≤ d− 1.

By (1) and (4),

rkU + rkV ≤ rkU0 + rkV0 + rk

Up+1
...
Up̃

+ rk

Vq+1
...
Vp̃


≤ pd+ dimkerK + (p̃− p) rk

(
Up+1 · · · Up̃

)
+ (p̃− q) rk

(
Vq+1 · · · Vp̃

)
≤ pd+ dimkerK + (p̃− p)(d− r − 1) + (p̃− q)r

= p̃d+ dimkerK + (p− q)r − (p̃− p)

≤ p̃d+ dimkerK + (p− q)(d− 1)− (p̃− p)

= p̃d+ dimkerK

by the definition of p̃.
(Second case) Now suppose (4) does not hold. Then by (3),

rk
(
U1 · · · Up̃

)
+ rk

(
Vq+1 · · · Vp̃

)
= d,

ran
(
U1 · · · Up

)
⊆ ran

(
Up+1 · · · Up̃

)
.

Thus, after multiplying Λ on the left and on the right with an invertible matrix, we can
assume that our matrices have the block structure

Aj =

(
A↑
j A→

j

0 A↓
j

)
, Uk =

(
0

U↓
k

)
, Vk =

(
V ↑
k

V ↓
k

)
for k ≤ q, Vk =

(
V ↑
k

0

)
for k > q

where A↑
j and V

↑
k have r rows, and A↓

j and U
↓
k have d− r rows. Then (1) implies

U
↓
1
...
U↓
p


⊤(∑

i

Ti ⊗ A↓
i

)V
↓
1
...
V ↓
q

 = 0,

and so

rk

U
↓
1
...
U↓
p

+ rk

V
↓
1
...
V ↓
q

 ≤ p(d− r) + dimker

(∑
i

Ti ⊗ A↓
i

)
≤ p(d− r) + dimkerK
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because
∑

i Ti ⊗ A↓
i is a square block in the block-upper-triangular K. Hence,

rkU + rkV ≤ rk

U
↓
1
...
U↓
p

+ rk

V
↓
1
...
V ↓
q

+ rk

U
↓
p+1
...

U↓
p̃

+ rk

V
↑
q+1
...

V ↑
p̃

+ rk

V
↑
1
...
V ↑
q


≤ p(d− r) + dimkerK + (p̃− p)(d− r) + (p̃− q)r + qr

= p̃d+ dimkerK.

Therefore, rkU + rkV ≤ p̃d + dimkerK = p̃d + dimkerΛ(T ) in both cases, so Λ is
full. □

3.1. Rank-equivalent matrices over the free algebra. We can now prove the main
result of this section.

Theorem 3.4. Let f and g be full c × c matrices over k<x>. Then f and g are
rank-equivalent if and only if f and g are stably associated.

Proof. The implication (⇐) is clear by the definition of stable association. To prove
(⇒), assume f and g are not stably associated. By [14, Theorem 5.8.3], f is stably
associated to a full affine matrix Λ′ = A′

0 +
∑

iA
′
ixi with A′

j ∈ Md′(k), and g is
stably associated to a full affine matrix Λ′′ = A′′

0 +
∑

iA
′′
i xi with A

′′
i ∈ Md′(k). Denote

d = d′+d′′ and Ai = A′
i⊕A′′

i . By Lemma 3.2, k′ = dimker f(X) and k′′ = dimker g(X)
are finite and distinct for some tuple of operators X on an infinite-dimensional space V .
note that dimkerΛ′(X) = k′ and dimkerΛ′′(X) = k′′. Let U be a finite-dimensional
subspace of V such that ker Λ′(X) + kerΛ′′(X) ⊆ k

d ⊗ U . Note that the subspace

Û =
∑

j XjU ⊂ V is finite-dimensional. By looking at the restrictions Xj|U : U → Û ,

and enlarging U ′ if necessary, we obtain T1, . . . , Tn ∈ k
p×q with p ≥ q = dimU such

that

dimker
n∑
j=0

A′
i ⊗ Ti ̸= dimker

n∑
j=0

A′′
i ⊗ Ti,

where T0 = ( I0 ). By Proposition 3.3 applied to K =
∑

iAi ⊗ Ti, the p̃d × p̃d affine
matrix (with p̃ = p+ (p− q)(d− 1))

∑
i

Ai ⊗

Ti
0

yi11 · · · yi1(p−q)
...

. . .
...

yip̃1 · · · yip̃(p̃−q)


has inner rank p̃d− k′ − k′′. By Lemma 3.1 there exists Y ∈ Mℓ(k)

(n+1)p̃(p̃−q) such that

(5) rk
n∑
i=0

Ai ⊗

Ti ⊗ Iℓ
0

Yi11 · · · Yi1(p̃−q)
...

. . .
...

Yip̃1 · · · Yip̃(p̃−q)

 = (p̃d− k′ − k′′)ℓ.



12 ELI SHAMOVICH AND JURIJ VOLČIČ

Since this holds for Y in a Zariski open subset of Mℓ(k)
(n+1)p̃(p̃−q), we can furthermore

assume that the (p̃− q)× (p̃− q) matrixY0(q+1)1 · · · Y0(q+1)(p̃−q)
...

. . .
...

Y0p̃1 · · · Y0p̃(p̃−q)


is invertible. Therefore, the p̃ℓ× p̃ℓ matrix

W =

T0 ⊗ Iℓ
0

Y011 · · · Y01(p̃−q)
...

. . .
...

Y0p̃1 · · · Y0p̃(p̃−q)


is invertible. Note that (5) implies

rk
n∑
i=0

A′
i ⊗

Ti ⊗ Iℓ
0

Yi11 · · · Yi1(p̃−q)
...

. . .
...

Yip̃1 · · · Yip̃(p̃−q)

 = (p̃d′ − k′)ℓ,

rk
n∑
i=0

A′′
i ⊗

Ti ⊗ Iℓ
0

Yi11 · · · Yi1(p̃−q)
...

. . .
...

Yip̃1 · · · Yip̃(p̃−q)

 = (p̃d′′ − k′′)ℓ.

(6)

Let Z ∈ Mp̃ℓ(k)
n be given as

Zj = W−1

Ti ⊗ Iℓ
0

Yi11 · · · Yi1(p̃−q)
...

. . .
...

Yip̃1 · · · Yip̃(p̃−q)


for j = 1, . . . , n. By (6),

rk f(Z) = cp̃ℓ− dimker f(Z) = d′p̃ℓ− (p̃d′ − k′)ℓ = k′ℓ

̸= k′′ℓ = d′′p̃ℓ− (p̃d′′ − k′′)ℓ = cp̃ℓ− dimker g(Z) = rk g(Z),

as desired. □

Theorem 3.4 and [14, Exercise 3.1.16] (or [20, Remark 4.1]) imply the following
corollary for homogeneous polynomials. Nevertheless, we provide an alternative self-
contained proof.

Corollary 3.5. Let f, g ∈ k<x> be homogeneous. Then f, g are stably associated if
and only if g = λf for some nonzero λ ∈ k.

Proof. Let Jf and Jg be the two-sided ideals in k<x> generated by f and g, respectively.
For d = max{deg f, deg g} + 1 let md be the ideal generated by all the monomials
of degree d. Consider the finite-dimensional k-algebra A = k<x>/(Jg + md). For
h ∈ k<x>, let Lh be the operator of left multiplication by h on A. We note that
Lh = h(Lx1 , . . . , Lxd). Hence, in particular, Lg = 0. Since the polynomials f and g are
rank-equivalent, Lf = 0. This means that f ∈ Jg+md. However, since f and g are both
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homogeneous and d is larger than their degrees, we have f ∈ Jg. Analogously, g ∈ Jf ,
and thus Jf = Jg. This immediately implies that g = λf for some λ ∈ k \ {0}. □

3.2. Relation with joint similarity of matrices. Let us draw a parallel with the
main result of [16] on joint similarity of matrix tuples and ranks of corresponding linear
pencils. By [16, Theorem 1.1], two tuples of c×cmatrices (A1, . . . , An) and (B1, . . . , Bn)
are jointly similar (meaning that there is P ∈ GLc(k) such that Bj = PAjP

−1 for all
j) if and only if

(7) rk
(
I ⊗X0 +A1 ⊗X1 + · · ·+An ⊗Xn

)
= rk

(
I ⊗X0 +B1 ⊗X1 + · · ·+Bn ⊗Xn

)
for all tuples of square matrices X = (X0, . . . , Xn) (moreover, an upper bound on the
dimension of X is given). Theorem 3.4 recovers this statement (without the dimension
bound). Indeed, if Ix0 +

∑
j Ajxj and Ix0 +

∑
j Bjxj are rank-equivalent, then they

are stably associated by Theorem 3.4. Since they are full and homogeneous, they are
conjugated by a constant matrix by [14, Theorem 5.8.3].

In general, A and B are not jointly similar if (7) holds only when X0 = I (e.g.,
take n = 1, A1 = ( 0 1

0 0 ) and B1 = ( 0 0
0 0 )). The following consequence of Theorem 3.4

examines the effect of restricting to X0 = I in (7).

Corollary 3.6. Let A = (A1, . . . , An), B = (B1, . . . , Bn) ∈ Mc(k)
n. Then

(8) rk
(
I ⊗ I + A1 ⊗X1 + · · ·+ An ⊗Xn

)
= rk

(
I ⊗ I +B1 ⊗X1 + · · ·+Bn ⊗Xn

)
for all X = (X1, . . . , Xn) if and only if I +

∑
j Ajxj and I +

∑
j Bjxj are stably asso-

ciated.
Furthermore, if⋂

j

kerAj =
⋂
j

kerA⊤
j =

⋂
j

kerBj =
⋂
j

kerB⊤
j = {0},

then (8) holds for all X if and only if A and B are jointly similar.

Proof. The first part is an immediate consequence of Theorem 3.4 since F = I+
∑

j Ajxj
and G = I +

∑
j Bjxj are full. By [14, Theorem 5.8.3] and the kernel assumption on

A an B, the affine matrices F and G are stably associated if and only if and only if
GQ = PF for some P,Q ∈ GLc(k), in which case Q = P and Bj = PAjP

−1. □

3.3. Stable association of powers. If f, g ∈ k<x> are rank-equivalent, it is not
necessarily true that their powers are likewise rank-equivalent (that is, while f and g
may always have the same number of Jordan blocks at 0, these blocks might not have
the same sizes). For example, let f = xyxy + xy + x and g = xy2x + xy + x. Then f
and g are stably associated, and therefore rank-equivalent, by f(yx + 1) = (xy + 1)g
and Theorem 2.1. On the other hand, f 2 and g2 are not rank-equivalent, and thus also
not stably associated by Theorem 3.4. Indeed, denote

X =

(
1 0
0 0

)
, Y =

(
0 1
−1 0

)
.

Then f(X, Y )2 ̸= 0 and g(X, Y )2 = 0.
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On the other hand, the converse of the statement holds (and is useful in Section 5
below).

Lemma 3.7. Let f, g ∈ k<x>. If fk and gk are stably associated for some k ∈ N, then
f and g are stably associated.

Proof. Since fk and gk are stably associated, there is an isomorphism of left R-modules
ϕ : R/Rfk → R/Rgk. Consider the chain of submodules

R/Rfk ⊃ Rf/Rfk ⊃ · · · ⊃ Rfk−1/Rfk ⊃ {0},
where the quotient of any two consecutive terms is isomorphic to R/Rf . The image of
this chain in R/Rgk,

ϕ(R/Rfk) ⊃ ϕ(Rf/Rfk) ⊃ · · · ⊃ ϕ(Rfk−1/Rfk) ⊃ {0},
corresponds to a factorization gk = f1 · · · fk where each fj is stably associated to f by
[14, Section 3.2]. If two polynomials are stably associated, then their irreducible factors
can be grouped into stably associated pairs. Thus, g, f1, . . . , fk, f all have the same
irreducible factors up to stable association (and ordering in a complete factorization).
Let ℓ be the highest common left factor of g and f1. If g and f1 are scalar multiples of
ℓ, then g and f are stably associated, as desired.
Suppose that g = ℓg′ and f1 = ℓf ′

1 for nonconstant g
′, f ′

1 ∈ R. Let ℓ′ be an irreducible
left factor of g′, and write g′ = ℓ′g′′. Then ℓ′ is stably associated to an irreducible factor
ℓ′′ of f ′

1, and write f ′
1 = aℓ′′b. The relation

ℓ′ · (g′′gk−1) = ℓ−1gk = ℓ−1f1 · · · fk = aℓ′′ · (bf ′
1f2 · · · fk)

shows that ℓ′R ∩ (aℓ′′)R ̸= {0}. Since ℓ′ and ℓ′′ are stably associated, [14, Corollary
4.3.4 and Theorem 4.2.3(a)] implies that aℓ′′ ∈ ℓ′R. Thus, ℓℓ′ is a common left factor
of g and f1, contradicting the choice of ℓ. □

4. Isospectrality

We say that f, g ∈ k<x> are intertwined if there exists a nonzero a ∈ k<x> (called
an intertwiner) such that fa = ag. By [48, Corollary 4.4], two polynomials are isospec-
tral if and only if they are intertwined. In this section, we revisit and strengthen this
result, provide a new characterization of isospectrality in terms of elementary inter-
twinedness, and derive some consequences of isospectrality that are used in the next
section.

4.1. Elementary intertwinedness and isospectrality. Let λ ∈ k and a, b ∈ k<x>.
We say that noncommutative polynomials λ+ab and λ+ba are elementary intertwined.
Note that (λ+ab)a = a(λ+ba), so elementary intertwinedness implies intertwinedness.

Theorem 4.1. The following are equivalent for f, g ∈ k<x>:

(i) for infinitely many k ∈ N there is a Zariski dense set Dk ⊆ Mk(k)
n such that

f(X) and g(X) share an eigenvalue for every X ∈ Dk;
(ii) f and g are isospectral;
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(iii) f and g are intertwined;
(iv) there exist ℓ ∈ N and f1, . . . , fℓ ∈ k<x> with f1 = f and fℓ = g such that fi

and fi+1 are elementary intertwined for all 1 ≤ i ≤ ℓ− 1.

Proof. The equivalence (ii)⇔(iii) is [48, Corollary 4.4]. The implication (ii)⇒(i) is triv-
ial, and the implication (iv)⇒(ii) follows by (iii)⇔(ii) and transitivity of isospectrality.

(iii)⇒(iv): Let nonzero a ∈ R be such that fa = ag. We prove the statement by
induction on the number of irreducible factors of a.

If a is irreducible, then E(a) = k by Theorem 2.2(b). Therefore f = λ + ab and
g = λ+ ba for some λ ∈ k and b ∈ R.

Now suppose that a is not irreducible. Note that g represents an element of E(a).
Since E(a) is finite-dimensional by Theorem 2.2(a), there exists λ ∈ k such that g−λ is
a zero divisor in E(a). Thus there exists c ∈ R\Ra such that ac ∈ Ra and (g−λ)c ∈ Ra.
If 1 ∈ R(g − λ) + Ra, then c ∈ R(g − λ)c + Rac ⊆ Ra, a contradiction. Therefore,
R(g−λ)+Ra is a proper left ideal in R. Since 0 ̸= (f−λ)a = a(g−λ) ∈ R(g−λ)∩Ra,
it follows by [14, Theorem 2.3.7] that R(g−λ)+Ra = Ra1 for some nonconstant a1 ∈ R.
Therefore g − λ = ba1 and a = ãa1 for some b, ã ∈ R. Let g̃ = λ + a1b. Then g and g̃
are elementary intertwined, and

fãa1 = fa = ag = ãa1(λ+ ba1) = ã(λ+ a1b)a1 = ãg̃a1,

so fã = ãg̃. Since ã has less irreducible factors than a, there is a sequence of elementary
intertwined polynomials between f and g̃ by the induction hypothesis. Hence, there is
a sequence of elementary intertwined polynomials between f and g.
(i)⇒(ii): The implication is trivial if either f or g is constant. Thus, assume f, g ∈

R \ k. Let Ok denote the set of X ∈ Mk(k)
n such that f(X) and g(X) each have n

pairwise distinct eigenvalues. For all large enough k ∈ N, Ok is a nonempty Zariski open
subset of Mk(k)

n by [12, Corollary 2.10]. By the assumption, Dk ∩ Ok is Zariski dense
in Mk(k)

n for infinitely many k ∈ N. For such k and X ∈ Dk ∩ Ok, the characteristic
polynomials of f(X) and g(X) each have pairwise distinct roots, and share a root. Let
Ω denote the n-tuple of k× k generic matrices with independent indeterminate entries,
UDk the universal division k-algebra generated by Ω [36, Section 3.2], and Z the center
of UDk. Consider monic polynomials χf = det(tI − f(Ω)) and χg = det(tI − g(Ω))
in Z[t]. Since Ok is dense in Mk(k)

n, the polynomials χf and χg each have pairwise
distinct roots in Z, and are consequently minimal polynomials of f(Ω) and g(Ω). Thus,
χf and χg are irreducible over Z since Z[t]/(χf ) and Z[t]/(χg) are isomorphic to the
Z-subfields in UDk generated by f(Ω) and g(Ω), respectively. Since Dk is dense in
Mk(k)

n, the polynomials χf and χg share a root in Z. By the irreducibility, χf = χg.
Thus, the spectra of f(X) and g(X) coincide for all X ∈ Mk(k)

n, for infinitely many
k ∈ N. Hence, f and g are isospectral. □

Theorem 4.1 in particular shows that intertwinedness coincides with the transitive
closure of elementary intertwinedness (for an analogous phenomenon in symbolic dy-
namics, see elementary and strong shift equivalence of integer matrices [30, Section
7.2]). Characterization of isospectrality in terms of elementary intertwinedness allows
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one (at least in principle) to construct the isospectrality equivalency class of a non-
commutative polynomial (see Example 4.4). Item (i) of Theorem 4.1 is used later in
Section 6 to investigate the pointwise norm equality. For homogeneous polynomials,
isospectrality implies elementary intertwinedness, as follows.

Corollary 4.2. Let f, g ∈ k<x> be homogeneous. Then f, g are isospectral if and only
if f = ab, g = ba for some homogeneous a, b ∈ k<x>.

Proof. If f, g are isospectral, then fa = ag for some nonzero a ∈ k<x> by Theorem 4.1.
Since f and g are homogeneous, we may take a homogeneous (more precisely, we can
replace the initial a with any of its nonzero homogeneous components). We distinguish
two cases. If deg a ≤ deg f , then the uniqueness of factorization for homogeneous
polynomials as in Proposition 2.3 applied to fa = ag shows that f = ab for some
b ∈ k<x>, and then g = ba. If deg a > deg f , then Proposition 2.3 implies a = fa′ for
some a′ ∈ k<x>, and consequently fa′ = a′g. Continuing in this fashion, we eventually
arrive at the first case. □

Remark 4.3. An intertwiner of f and g (if it exists) of minimal degree is unique up to
scaling, and all other intertwiners are its left multiples by polynomials that commute
with f . Indeed, let M = {a ∈ k<x> : fa = ag}, and let C be the centralizer of f
in k<x>. By Bergman’s centralizer theorem [8], the k-algebra C is isomorphic to the

univariate polynomial ring over k; furthermore, the centralizer C̃ of f in the universal
skew field of fractions of f equals the field of fractions of C. Let us view M as a left
C-module. Clearly, M is torsion-free; since C is a principal ideal domain, M is a free

C-module. If 0 ̸= a, b ∈ M , then fba−1 = bga−1 = ba−1f , and so ba−1 ∈ C̃. Thus, the

vector space C̃ ⊗C M is one-dimensional, and so M is free of rank 1. Hence, M = C · a
for an intertwiner a of minimal degree.

Example 4.4. Let p, q, r ∈ k[x] and p, q ̸= 0. Consider

f = pyq + r, g = qyp+ r

in k<x, y>. Note that qfp = pgq. If X is such that p(X), q(X) are invertible, then

g(X, Y ) =
(
p(X)q(X)−1

)−1
f(X, Y )

(
p(X)q(X)−1

)
.

In particular, f(X, Y ) and g(X, Y ) are similar for a generic pair (X, Y ), and thus f
and g are isospectral by the continuity of eigenvalues. Thus f and g are intertwined
by Theorem 4.1. If p ̸= q and deg p, deg q ≥ 1, then f and g are not elementary
intertwined.

The reader may observe that for general p, q, r, finding a nonzero a ∈ k<x, y> such
that fa = ag or ga = af is not completely straightforward. For a case study, fix a finite
subset S ⊂ k. For every A ⊆ S denote pA =

∏
α∈A(x− α) ∈ k[x]. Then{

pAypS\A + x : A ⊆ S
}

is an equivalence class (of size 2|S|) for the transitive extension of the elementary in-
tertwinedness, and thus for isospectrality. Indeed, observe that pAypS\A + x − λ for
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λ ∈ k is either irreducible, or has two irreducible factors: x− λ and a factor of degree
|S|. This shows that pAypS\A + x is elementary intertwined only with pBypS\B + x for
|S \ (A∩B)| ≤ 1. More generally, one needs |S \ (A∩B))| elementary intertwined pairs
to pass from pAypS\A + x to qBypS\B + x. In particular, to pass from f = pSy + x to
g = ypS+x, one requires |S| elementary intertwined pairs. Concretely, if S = {1, . . . , s},

(9) p{1,...,s}y + x⇝ p{2,...,s}yp{1} + x⇝ p{3,...,s}yp{1,2} + x⇝ · · ·⇝ yp{1,...,s} + x.

Note that deg f = deg g = |S| + 1. The minimal a ̸= 0 such that fa = ag has degree
|S|; for example, a = pS. On the other hand, as the proof of Theorem 4.1(iii)⇒(iv)
indicates, the minimal a ̸= 0 such that ga = af has degree |S|2. Indeed, retracing (9)
using the identity (v(u− λ) + u)(v + 1) = (v + 1)((u− λ)v + u) for a scalar λ, one sees
that

a =
(
yp{1,...,s−1} + 1

)(
p{s}yp{1,...,s−2} + 1

)(
p{s−1,s}yp{1,...,s−3} + 1

)
· · ·
(
p{2,...,s}y + 1

)
satisfies ga = af .

4.2. Operator isospectrality. Let V be a vector space over k. The spectrum of a
linear operator Y : V → V is the set σ(Y ) = {λ ∈ k : Y − λI is not invertible}. We
say that f, g ∈ k<x> are operator isospectral if the spectra of f(X) and g(X) coincide,
for all tuples of linear operators V → V , and all vector spaces V .2 Clearly, opera-
tor isospectrality implies isospectrality. However, the converse fails, as the following
example shows.

Example 4.5. Let f = xy and g = yx. Then f and g are elementary intertwined, and
thus isospectral. Let S ∈ B(ℓ2(N)) be the unilateral shift. Then, f(S, S∗) is a non-trivial
projection and g(S, S∗) = I. Therefore, f and g are not operator isospectral.

While operator isospectrality is stronger than isospectrality, it is still weaker than
pointwise similarity. More precisely, it does not imply rank equivalence, as demon-
strated in Example (4.7) below. First, we record a few straightforward observations
regarding spectra of noncommutative polynomials on operators.

Lemma 4.6. Let f, g ∈ k<x>, and let X be a tuple of linear operators on a vector
space over k.

(a) If f, g are stably associated, then f(X) is invertible if and only if g(X) is in-
vertible.

(b) If f, g are elementary intertwined as f = λ+ ab and g = λ+ ba, then σ(f(X)) \
{λ} = σ(g(X)) \ {λ}.

(c) If f, g are isospectral, there exists a finite set S ⊂ k, independent of X, such
that σ(f(X)) \ S = σ(g(X)) \ S.

Proof. (a) Follows directly from the definition of stable association, using that Y is
invertible if and only if Y ⊕ I is invertible.

2It may be natural to restrict to k = C, and evaluations on tuples of bounded operators on a

separable Banach/Hilbert space. However, the conclusions of this subsection would remain the same.
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(b) If β ̸= λ, then f − β and g − β are stably associated, via the comaximal relation
(f − β)a = a(g − β). Then, (b) follows from (a).

(c) If f, g are isospectral, one can pass from one to the other by a finite chain of
elementary intertwined pairs by Theorem 4.1. Then, (c) follows from (b). □

Example 4.7. Let f = xy2x and g = yx2y. Let X, Y be linear operators on a vector
space over k. By Lemma 4.6(b), σ(f(X, Y )) \ {0} = σ(g(X, Y )) \ {0}. Thus, we only
need to investigate the membership of 0 in the spectra, which is only possible if at
least one of X, Y is singular (non-invertible). If X is not injective, then f(X, Y ) is not
injective; if X is not surjective, then f(X, Y ) is not surjective. We conclude that if
X is singular, then 0 ∈ σ(f(X, Y )). Similarly, if Y is singular, then 0 ∈ σ(g(X, Y )).
Therefore, if both X and Y are singular, then the spectra of f(X, Y ) and g(X, Y )
coincide. We are left with the option that X is singular and Y is not, or vice versa.
If X is singular, then so is f(X, Y ). In order for the spectra to differ, g(X, Y ) must
be invertible. However, if both g(X, Y ) and Y are invertible, then so is X2, which is
impossible. Thus, the spectra of f(X, Y ) and g(X, Y ) always coincide.

To see that f and g are not rank-equivalent, let

X =

(
0 1
0 0

)
and Y =

1

2

(
1 1
1 1

)
.

On the one hand, X2 = 0 implies g(X, Y ) = 0. On the other hand, Y is a projection,
and f(X, Y ) = XYX = 1

2
X ̸= 0.

The above reasoning extends to the following family of non-trivial operator isospectral
pairs: if a1, a2 ∈ k<x> are stably associated and b1, b2 ∈ k<x> are stably associated,
then a1b1b2a2 and b2a2a1b1 are operator isospectral polynomials. Similarly, if a, b ∈
k<x> are such that ab and ba are stably associated, then ab and ba are operator
isospectral (see Example 5.2 below for an instance of noncommuting a, b with this
feature). We leave the quest for characterization of operator isospectrality and related
problems for future work.

4.3. Isospectrality and composition. The following observations about isospectral-
ity and composition are needed later in Section 5 below.

Lemma 4.8. Let f, g ∈ k<x> be isospectral, and p ∈ k[t]. Then every irreducible
factor of p(f) is stably associated to a factor of p(g).

Proof. Given h ∈ k<x>, its free locus Z(h) [21] is the set of all matrix tuples X such
that deth(X) = 0. Since f and g are isospectral, so are p(f) and p(g), and in particular
Z(p(f)) = Z(p(g)). By [21, Theorem 2.12] it then follows that every irreducible factor
of p(f) is stably associated to a factor of p(g). □

Lemma 4.9. Let f ∈ k<x>, and let α, β ∈ k be distinct. Then no factor of f − α is
stably associated to a factor of f − β.
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Proof. Suppose f − α = ahb and f − β = a′h′b′, where h and h′ are stably associated.
Then

ahb− a′h′b′ = β − α.

But such a relation cannot hold in k<x> by [14, Theorem 4.2.3(f)] because k<x>
possesses the strong distributive factor lattice property [14, Corollary 4.3.4]. □

We say that f ∈ k<x> is composite if f = p(f̃) for some f̃ ∈ k<x> and a nonlinear
p ∈ k[t], and non-composite otherwise. Observe that detecting composition is straight-
forward by Bergman’s centralizer theorem [8]: namely, f is composite if and only if
the linear space {h ∈ k<x> : fh = hf & deg h < deg f} is nonzero. The following
assertion appears implicitly in [48].

Lemma 4.10. If f, g ∈ k<x> are isospectral, there exist p ∈ k[t] and non-composite

isospectral f̃ , g̃ ∈ k<x> such that f = p(f̃) and g = p(g̃).

Proof. Write f = p(f̃) and g = q(g̃) for monic p, q ∈ k[t] and non-composite f̃ , g̃ ∈ R.

By [48, Theorem 3.2], there is A ⊆ k such that k \ A is finite and f̃ − α, g̃ − α is
irreducible for all α ∈ A. Since k \ A is finite, there exists Λ ⊂ k such that k \ Λ is
finite and p− λ, q − λ both have pairwise distinct roots in k \ A, for all λ ∈ Λ. Let

p− λ =
r∏
j=1

(t− βj), q − λ =
s∏
j=1

(t− γj).

Since f̃ − βj, g̃ − γj are irreducible, Lemmas 4.9 and 4.8 imply that r = s, and there
is a permutation π of {1, . . . , r} such that f − βj is stably associated to g − γπ(j) for
j = 1, . . . , n. In particular, after reordering we have γj = βj + g(0) − f(0) for all

j = 1, . . . , n. Hence, p = q after an affine transformation, and f̃ − βj, g̃ − βj are stably
associated for j = 1, . . . , n. Furthermore, as λ ∈ Λ varies, the roots βj attain all but

finitely many values in k. Thus, f̃ − β, g̃− β are stably associated (in particular, rank-

equivalent) for all but finitely many β ∈ k. Hence, f̃ and g̃ are isospectral by the
continuity of eigenvalues. □

Remark 4.11. Lemma 4.10 shows that deciding isospectrality reduces to non-composite
polynomials. By the proof of [48, Corollary 4.4], non-composite f, g ∈ k<x> are
isospectral if and only if (f − t)a = b(g − t) for some nonzero a, b ∈ k(t) ⊗ k<x> of
degree less than deg f , which turns deciding isospectrality into a linear problem over
the rational field k(t).

5. Pointwise similarity

In this section, we show that two polynomials are pointwise similar if and only if they
are equal (Theorem 5.6). Before embarking on the proof, let us briefly comment on the
perceived complexity of this problem.3 On the one hand, pointwise similarity is a much
more restrictive local equivalence than isospectrality and rank equivalence, indicating

3The authors admit that they expected a quicker resolution.
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a likelihood for a strong algebraic characterization. On the other hand, pointwise
similarity lacks some desired features of isospectrality (continuity) and rank equivalence
(clear interpretation of counting homomorphisms between free algebra modules). The
first main ingredient of the resolution of this problem comes from the Jordan canonical
form: f and g are pointwise similar if and only if (f − λ)k and (g − λ)k are stably
associated, for all λ ∈ k and k ∈ N. However, as stable association of powers turns out
to be inconvenient to work with, the intertwining emerging from isospectrality is the
second main ingredient.

Proposition 5.1. Let f, g ∈ k<x>. Assume that one of the following holds:

(a) f − λ is irreducible and stably associated to g − λ for every λ ∈ k;
(b) there is a ∈ k<x> such that (f − λ)a = a(g − λ) is coprime for every λ.

Then f = g.

Proof. Assume (a) holds. Let λ ∈ k be arbitrary. Since f − λ and g − λ are stably
associated, g − λ is also irreducible. Consider the system of linear equations over k[t],

(10) (f − t)A(t) = B(t)(g − t), degA(t), degB(t) < deg f

in coefficients of A(t), B(t) ∈ k[t] ⊗ R. By stable association and Lemma 2.4(a), for
every λ ∈ k, the specialization of the linear system (10) at t = λ admits a nonzero
solution. Therefore, the system (10) itself admits a nonzero solution A0(t), B0(t) ∈
k[t] ⊗ R. Furthermore, by factoring out common factors in k[t], we can assume that
A0(λ), B0(λ) ̸= 0 for all λ ∈ k. Since f − λ and g − λ are irreducible, it follows that
(f − λ)A(λ) = B(λ)(g − λ) is a coprime/comaximal relation.

Now consider the system of affine equations over k[t],

(11) (f − t)A(t) +B0(t)B(t) = 1, degA(t), degB(t) < deg f

in coefficients of A(t), B(t) ∈ k[t]⊗R. By the preceding paragraph and Lemma 2.4(b),
for every λ ∈ k, the specialization of the linear system (11) at t = λ admits a solution.

Furthermore, this solution is necessarily unique: if a, b and ã, b̃ solve (11) at t = λ, then

(f − λ)(a − ã) = B0(b̃ − b); irreducibility of f − λ and degree comparison then imply

a− ã = 0 and b̃− b = 0. Let us transform the system (11) into a Smith normal matrix
form, 

u1
. . .

ur

 z =


v1
...
vr
...

 , uj ∈ k[t] \ {0}, vj ∈ k[t],

where z is the vector of coefficients of A(t), B(t). Since (11) at t = λ is uniquely
solvable, it follows that vj(λ) = 0 for j > r, and uj(λ) ̸= 0 for 1 ≤ j ≤ r. Since this
holds for every λ ∈ k, it follows that u1, . . . , ur ∈ k \ {0}, and vj = 0 for j > r. Thus,
(11) admits a solution A1(t), B1(t) ∈ k[t]⊗R.
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In the same way we see that there are A2(t), B2(t) ∈ k[t]⊗R satisfying A2(t)A0(t)+
B2(t)(g−t) = 1. Together with (10) and (11), this means that (f−t)A0(t) = B0(t)(g−t)
is a comaximal relation in k[t]⊗R. Hence, f = g by [14, Proposition 0.6.5].

Now, assume (b) holds. By [14, Proposition 0.6.5], it suffices to see that (f − t)a =
a(g − t) is a comaximal relation in k[t] ⊗ R. Consider the system of affine equations
over k[t],

(12) (f − t)A(t) + aB(t) = 1, degA(t) < deg a, degB(t) < deg f

in coefficients of A(t), B(t) ∈ k[t]⊗R. By the assumption and Lemma 2.4(b), for every
λ ∈ k, the specialization of the linear system (12) at t = λ admits a solution. Moreover,

this solution is unique. Suppose, way of contradiction, that c, d and c̃, d̃ solve (12) at

t = λ, and c ̸= c̃. Then (f − λ)(c− c̃) = a(d̃− d), and so

(d̃− d)(c− c̃)−1 = a−1(f − λ) = (g − λ)a−1

in the universal skew field of fractions of R. Thus, there exists 0 ̸= q ∈ R such that
c − c̃ = aq by left comaximality of a and g − λ [14, Proposition 2.3.10], contradicting
deg(c− c̃) < deg a. From hereon, the same argument involving a Smith normal form as
in the case (a) applies, showing that (f − t)a = a(g − t) is comaximal in k[t]⊗R, and
thus f = g. □

The irreducibility assumption in Proposition 5.1(a) is essential, as the following ex-
ample demonstrates.

Example 5.2. Denote

a = yx3y + xy + yx, b = xyxyx+ xy + yx,

u = 1 + x2y, v = 1 + xyx, w = 1 + yx2.

Observe that these five polynomials are irreducible, bu = va and av = wb. Thus, a, b
are stably associated, and u, v, w are stably associated. In particular, ab, w are left
coprime and ba, u are right coprime. Hence, (ab)u = w(ba) is a coprime relation. By
Theorem 2.1 it follows that ab and ba are stably associated, yet ab ̸= ba.4 Thus, f = ab
and g = ba are distinct polynomials such that f −λ and g−λ are stably associated for
every λ ∈ k (though f − t and g − t are not stably associated in k[t] ⊗ k<x> by [14,
Proposition 0.6.5]). Since f − λ and g − λ are rank-equivalent for all λ ∈ k, it follows
(by looking at the possible Jordan canonical forms) that f and g are pointwise similar

on all pairs of 3× 3 matrices. On the other hand, if ξ =
√

29 + 13
√
5 and

X =


1 0 0 0

0
√
5−1
2

0 0
0 0 −1 0

0 0 0 11−5
√
5

4
ξ

 , Y =


0 −5−

√
5

10
0 0

1 −1 2 0

1 −1
2
√
5

0 5−3
√
5

10
ξ

√
5−3
4

−
√
5

2

√
5−3
2

ξ − 4− 2
√
5

 ,

4To authors’ best knowledge, the presented pair a, b is the first known example of this phenomenon;

cf. the open question in [14, Exercise 0.5.4].
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then f(X, Y )2 = 0 and g(X, Y )2 ̸= 0. Hence, f(X, Y ) and g(X, Y ) are not similar.5

On the other hand, Proposition 5.1(b) is one of the ingredients for showing that
pointwise similar polynomials are equal. Another ingredient is the absence of nonzero
homomorphisms between certain modules over k<x>, which is established by the fol-
lowing two lemmas.

Lemma 5.3. Let f ∈ R = k<x>, and let p, q ∈ k[t] be coprime univariate polynomials.
Then,

HomR

(
R/Rp(f), R/Rq(f)

)
= Ext1R

(
R/Rp(f), R/Rq(f)

)
= {0}.

In particular, R/R(p(f)q(f)) ∼= R/Rp(f)⊕R/Rq(f).

Proof. Let us consider the free resolution of the left module R/Rp(f),

0 −−−→ R
·p(f)−−−→ R −−−→ R/Rp(f) −−−→ 0.

Applying the functor HomR( , R/Rq(f)), we get the exact sequence

(13)
0 −−−→ HomR(R/Rp(f), R/Rq(f)) −−−→ R/q(f)R

·p(f)−−−→ R/q(f)R

−−−→ Ext1R(R/Rp(f), R/Rq(f)) −−−→ 0 .

Here, we used the isomorphism HomR(R,R/Rq(f)) → R/Rq(f) determined by φ 7→
φ(1). Since p and q are coprime, there exist a, b ∈ k[t], such that pa+bq = 1. Therefore,
a(f)p(f) + b(f)q(f) = 1. So the induced map of right multiplication by p(f) has an
inverse given by right multiplication by a(f). Therefore, the exact sequence (13) implies
the first part of the lemma. Since all extensions of R/Rp(f) by R/Rg(f) are trivial,
the second part of the lemma follows. □

We also require a partial generalization of Lemma 5.3.

Lemma 5.4. If f, g ∈ k<x> are isospectral and p, q ∈ k[t] are coprime, then

HomR

(
R/Rp(f), R/Rq(g)

)
= {0}.

Proof. Suppose HomR(R/Rp(f), R/Rq(g)) ̸= {0}. Then an irreducible factor h of p(f)
is stably associated to a factor of q(g) by [14, Exercise 3.2.11]. consequently to a factor of
q(f) by Lemma 4.8. Thus, there exist distinct α, β ∈ k (the first a root of p, the second
a root of q) such that a factor of f−α is stably associated to a factor of f−β. However,
this is a contradiction by Lemma 4.9. Hence, HomR(R/Rp(f), R/Rq(g)) = {0}. □

The next lemma allows us to reduce the pointwise similarity characterization to the
case of non-composite polynomials.

Lemma 5.5. Every pair of pointwise similar polynomials in k<x> is of the form
p(f), p(g) where p ∈ k[t], and f, g ∈ k<x> are non-composite and pointwise similar.

5There is no particular significance behind the numbers in X and Y ; this matrix pair was constructed

essentially by brute force.
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Proof. By Lemma 4.10, pointwise similar polynomials are of the form p(f), p(g) where
p ∈ k[t] and f, g ∈ R are non-composite and isospectral. Now fix λ ∈ k and note that
there exists k ∈ N, such that p(t)− p(λ) = (t− λ)kq(t), where q ∈ k[t] and (t− λ)k are
coprime. By the assumption and Lemma 5.3,

R/R(f − λ)k ⊕R/Rq(f) ∼= R/R(p(f)− p(λ))

∼= R/R(p(g)− p(λ)) ∼= R/R(g − λ)k ⊕R/Rq(g).
(14)

Since HomR(R/R(f−λ)k, R/Rq(g)) = {0} and HomR(R/Rq(f), R/R(g−λ)k) = {0} by
Lemma 5.4, the isomorphism (14) implies R/R(f − λ)k ∼= R/R(g− λ)k. Repeating the
above argument with powers of p−p(λ), we see that R/R(f−λ)ℓk ∼= R/R(g−λ)ℓk for all
ℓ ∈ N. By Lemma 3.7, (f −λ)ℓ is stably associated to (g−λ)ℓ. Thus, rk(f(X)−λI)ℓ =
rk(g(X) − λI)ℓ for all λ ∈ k, ℓ ∈ N and matrix tuples X. Using the Jordan canonical
form we then conclude that f and g are pointwise similar. □

We are now ready to show that pointwise similarity is equality.

Theorem 5.6. Let f, g ∈ k<x> be pointwise similar. Then, f = g.

Proof. By Lemma 5.5, we may assume that f and g are non-composite. By [48, Theorem
3.2] there exists β ∈ k \ {0} such that f − β and g− β are irreducible. Let a ∈ R \ {0}
denote an intertwinner of f and g of minimal degree; note that (f − β)a = a(g − β) is
a coprime relation. Since f and g are pointwise similar, f(f − β) is stably associated
to g(g − β). Then,

(15) R/Rf ⊕R/R(f − β) ∼= R/R(f(f − β)) ∼= R/R(g(g− β)) ∼= R/Rg⊕R/R(g− β)

by Lemma 5.3. The middle isomorphism in (15) is given by 1 7→ aβ with f(f − β)aβ =
bβg(g−β) comaximal. Stable association of f−β and g−β implies HomR(R/Rf,R/R(g−
β)) ∼= HomR(R/Rf,R/R(f − β)) = {0} by Lemma 5.3; similarly, stable association of
f and g implies HomR(R/Rg,R/R(f −β)) = {0}. Thus, the maps R/Rf → R/Rg and
R/R(f − β) → R/R(g − β) induced by (15) are isomorphisms. Since (15) maps (1, 1)
to (aβ, aβ), there exist cβ, dβ ∈ R such that

faβ = cβg and (f − β)aβ = dβ(g − β)

are comaximal relations. Combining these relations gives β(aβ−dβ) = (cβ−aβ)g. Since
f −β and g−β are irreducible, Theorem 2.2 implies dimkHomR(R/R(f −β), R/R(g−
β)) = 1. Therefore, up to rescaling, we may assume that aβ = a + h(g − β) and
dβ = a + (f − β)h for some h ∈ R. Thus, aβ − dβ = h(g − β) − (f − β)h = hg − fh,
and consequently,

(cβ − aβ)g = β(aβ − dβ) = βhg − βfh.

Hence, βfh = (aβ − cβ + βh)g. On the other hand,

cβg = faβ = f(a+ h(g − β)) = fa+ fhg − βfh = ag + fhg − βfh.

Hence, βfh = (a−cβ+fh)g. Combining the two, we get (aβ−cβ+βh)g = (a−cβ+fh)g.
Therefore, aβ = a+(f−β)h = dβ, and consequently aβ = cβ, so f and g are comaximally
intertwined (i.e., faβ = aβg is comaximal).
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Applying the above argument to f − λ and g − λ (in place of f and g) for arbitrary
λ ∈ k, we conclude that there exists wλ ∈ R such that (f − λ)wλ = wλ(g − λ) is
a comaximal relation. Moreover, we may assume that wλ is not left-divisible by an
element of R that commutes with f (otherwise, dividing wλ on the left with it again
gives w′

λ such that (f − λ)w′
λ = w′

λ(g − λ) is comaximal). Since fwλ = wλg, Remark
4.3 implies that wλ is a scalar multiple of a. Hence, (f − λ)a = a(g − λ) is comaximal
for every λ, so f = g by Proposition 5.1(b). □

As a consequence, we obtain a criterion for witnessing noncommutativity in the free
algebra through matricial evaluations.

Corollary 5.7. If a, b ∈ k<x> do not commute, there exists a matrix tuple X such

that the ranks of
(
a(X)b(X)

)k
and

(
b(X)a(X)

)k
differ for some k ∈ N.

Proof. Note that (ab − λ)k and (ba − λ)k are stably associated for every k ∈ N and

λ ∈ k\{0}, due to the comaximal relation (ab−λ)ka = a(ba−λ)k. If rk
(
a(X)b(X)

)k
=

rk
(
b(X)a(X)

)k
for all X and k ∈ N, then rk((ab)(X) − λI)k = rk((ba)(X) − λI)k for

all λ ∈ k, k ∈ N and matrix tuples X. Hence, the Jordan canonical form shows that
ab and ba are pointwise similar, so ab = ba by Theorem 5.6. □

6. Norm and singular value equivalence

Throughout this section, let k = C. The final main result of this paper (Theorem 6.3)
characterizes pairs of polynomials that have pointwise equal norms. Investigating this
norm equivalence leads one to look at a suitable real structure on the free algebra. In
addition to C<x>, we consider its extension, the free ∗-algebra C<x, x∗> generated by
x1, . . . , xn, x

∗
1, . . . , x

∗
n, and endowed the antilinear involution ∗ determined by xj ↔ x∗j .

Note that f ∗(X,X∗) = (f(X,X∗))∗ for all X ∈ Mk(C)n.
The following is a well-known fact in complex analysis, which we record for conve-

nience.

Lemma 6.1. Let O ⊆ Cn be an Euclidean open set, and let D be an analytically dense
subset of O. If ϕ, ψ are nonzero analytic functions on O such that |ϕ(z)| = |ψ(z)|, then
there exists ζ ∈ C with |ζ| = 1 such that ψ = ζϕ.

Proof. Let V = {ϕ = 0} ⊂ O. Then ψ
ϕ
is analytic on the open set O \ V , and |ψ

ϕ
| = 1

on D∩ (O\V ). Since D∩ (O\V ) is analytically dense in O\V , it follows that |ψ
ϕ
| = 1

on O \ V . Since the latter is open, the maximum modulus principle implies that ψ
ϕ
is

constant, so ψ = ζϕ for some ζ ∈ C with |ζ| = 1. □

The main message of the following proposition is that noncommutative polynomials
with pointwise equal spectral radii are isospectral up to scaling by a constant of modulus
1. For a later use, we establish a slightly stronger statement, where Hk(C) denotes the
real space of hermitian k × k matrices.
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Proposition 6.2. Let f, g ∈ C<x>. Assume that for every k ∈ N and X ∈ Hk(C)n,
f(X) and g(X) have the same spectral radius. Then there exists ζ ∈ C with |ζ| = 1
such that ζf and g are isospectral.

Proof. The statement is clear if either f or g is constant; thus, we assume that f, g ∈
C<x> \C. Let Ok denote the set of X ∈ Mk(C)n such that f(X) and g(X) each have
n pairwise distinct eigenvalues. By [12, Corollary 2.10], there is a cofinite K ⊆ N such
that for all k ∈ K, the set Ok is nonempty and Zariski open in Mk(C)n. For k ∈ K and
X ∈ Ok, the eigenvalues of f(X), g(X) can be viewed as algebraic functions Ok → C.
Then there exists a Euclidean open subset O′

k ⊂ Ok and holomorphic functions λk, µk
on O′

k such that λk(X) (resp. µk(X)) is a maximal (by absolute value) eigenvalue of
f(X) (resp. g(X)), for all X ∈ O′

k. By assumption, |λk| = |µk| on O′
k ∩ Hk(C)n,

which is analytically dense in O′
k. By Lemma 6.1, there exists ζk ∈ C with |ζk| = 1

such that µk = ζkλk. That is, ζkf(X) and g(X) share an eigenvalue for all X in a
Zariski dense subset of Mk(C)n. As in the proof of Theorem 4.1(i)⇒(ii), we see that
the spectra of ζkf(X) and g(X) coincide for every X ∈ Mk(C)n. Now fix some m ∈ K
and X ∈ Mm(C)n with f(X) ̸= {0} (e.g., X ∈ O′

m). Then, the spectrum of f(X)
satisfies

ζm · σ
(
f(X)

)
= σ

(
g(X)

)
= σ

(
g(X⊕ℓ)

)
= ζℓm · σ

(
f(X⊕ℓ)

)
= ζℓm · σ

(
f(X)

)
for all ℓ ∈ N. Thus, there is ζ ∈ C with |ζ| = 1 such that ζ = ζk for infinitely many
k ∈ K. Hence, ζf and g are isospectral. □

The following theorem combines the results on isospectrality from Section 4 with the
tracial Nullstellensatz for C<x, x∗> from [11].

Theorem 6.3. The following are equivalent for f, g ∈ C<x>:
(i) f and g have pointwise the same Frobenius norm;
(ii) f and g have pointwise the same operator norm;
(iii) f and g have pointwise the same singular values;
(iv) g = ζf for some ζ ∈ C with |ζ| = 1.

Proof. The implications (iv)⇒(iii)⇒(ii)&(i) are clear.
(ii)⇒(iii): Let y = (y1, . . . , yn) and z = (z1, . . . , zn) be two tuples of freely non-

commuting self-adjoint variables. Viewing f, g ∈ C<x> as elements in C<x, x∗>, we
consider F = f(y+ iz)f ∗(y+ iz) and G = g(y+ iz)g∗(y+ iz) in C<y, z>. Since f and
g have the same operator norm on Mk(C)n, F and G have the same spectral radius on
Hk(C)2n. By Proposition 6.2, there exists ξ ∈ C with |ξ| = 1 such that ζF and G are
isospectral. Furthermore, ξ = 1 since F and G are positive semidefinite on Hk(C)2n.
Thus, f and g have the same singular values on Mk(C)n, for every k ∈ N.

(i)⇒(iv): By assumption, tr(f(X)f(X)∗) = tr(g(X)g(X)∗) for all X. Consider
ff ∗, gg∗ ∈ C<x, x∗>. By [11, Corollary 5.21], ff ∗ and gg∗ are cyclically equivalent, in
the sense that one obtains gg∗ by cyclically rotating the words in the expansion of ff ∗

[11, Remark 5.5]. Note that all words in expansions of ff ∗ and gg∗ are of the form uv∗

for u, v ∈ <x>. Observe that words u1v
∗
1 and u2v

∗
2 with uj, vj ∈ <x> \{1} are cyclically
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equivalent if and only if u1 = v1 and u2 = v2. Thus, cyclic equivalence of ff ∗ and gg∗

implies that ff ∗ = gg∗. Since f, g ∈ C<x> and f ∗, g∗ ∈ C<x∗>, it follows that g = ζf
for some ζ ∈ C, and furthermore ζζ̄ = 1 because of the relation ff ∗ = gg∗. □

Looking at noncommutative polynomials in free variables and their formal adjoints
naturally leads to further pointwise equivalences. For example, while pointwise (uni-
tarily) similar polynomials in C<x> are necessarily equal by Theorem 5.6, there are
non-trivial pairs of pointwise unitarily similar polynomials in C<x, x∗>, such as xx∗

and x∗x. Such pointwise equivalences on C<x, x∗> have a distinct real flavor, and
admit larger equivalence classes than their ∗-free analogs presented in earlier sections
(for example, various nonconstant polynomials in C<x, x∗> are rank-equivalent to 1,
cf. [27]). Their exploration calls for methods beyond the scope of this paper.
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[21] J. W. Helton, I. Klep, and J. Volčič. Factorization of noncommutative polynomials and Nullstel-

lensätze for the free algebra. Int. Math. Res. Not. IMRN, 2022(1):343–372, 2022.

[22] J. W. Helton and S. A. McCullough. A Positivstellensatz for non-commutative polynomials. Trans.

Amer. Math. Soc., 356(9):3721–3737, 2004.

[23] M. T. Jury and R. T. W. Martin. Fatou’s theorem for non-commutative measures. Adv. Math.,

400:Paper No. 108293, 53, 2022.

[24] M. T. Jury and R. T. W. Martin. Lebesgue decomposition of non-commutative measures. Int.

Math. Res. Not. IMRN, 2022:4:2968–3030, 2022.

[25] M. T. Jury, R. T. W. Martin, and E. Shamovich. Blaschke-singular-outer factorization of free

non-commutative functions. Adv. Math., 384:Paper No. 107720, 42, 2021.

[26] D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov. Noncommutative rational functions, their

difference-differential calculus and realizations. Multidimens. Syst. Signal Process., 23:49–77, 2010.
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