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Abstract. This paper solves the two-sided version and provides a counterexample

to the general version of the 2003 conjecture by Hadwin and Larson. Consider eval-

uations of linear matrix pencils L = T0 + x1T1 + · · · + xmTm on matrix tuples as

L(X1, . . . , Xm) = I ⊗ T0 + X1 ⊗ T1 + · · · + Xm ⊗ Tm. It is shown that ranks of

linear matrix pencils constitute a collection of separating invariants for simultaneous

similarity of matrix tuples. That is, m-tuples A and B of n × n matrices are simul-

taneously similar if and only if rkL(A) = rkL(B) for all linear matrix pencils L of

size mn. Variants of this property are also established for symplectic, orthogonal,

unitary similarity, and for the left-right action of general linear groups. Furthermore,

a polynomial time algorithm for orbit equivalence of matrix tuples under the left-right

action of special linear groups is deduced.
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1. Introduction

Two tuples of n × n matrices A = (A1, . . . , Am) and B = (B1, . . . , Bm) over a

field are (simultaneously) similar or conjugate if there exists P ∈ GLn such that

Bi = PAiP
−1 for i = 1, . . . ,m. The classification of matrix tuples up to similarity

has been deemed a “hopeless problem” [LB97]. Nevertheless, the study of simultane-

ous similarity and related group actions on matrix tuples is crucial in multiple areas

of mathematics, ranging from operator theory [Fri83, DKS04], invariant and repre-

sentation theory [Dro80, Pro76] and algebraic geometry [EH88, LBR99] to algebraic

statistics [AKRS21, DM21] and computational complexity [GGOW16, DM17, IQS17].

As one would expect, this allows for many perspectives in studying matrix tuples and

the transfer of ideas across disciplines can be especially fruitful. This paper embodies

this spirit – we leverage results in representation theory to obtain significant results in

operator theory and computational complexity. Notably, we settle the Hadwin–Larson

conjecture [HL03] from operator theory, and deduce a polynomial time algorithm for

the orbit equivalence of the left-right action which is of interest to complexity theorists,

invariant theorists, and algebraic statisticians alike.

A prominent facet of simultaneous similarity is finding a (natural) collection of sepa-

rating invariants. Note that continuous invariants cannot separate similarity orbits (see

e.g. [Pro76]).1 If an orbit is not closed, any continuous invariant function is forced to

take the same value on the entire closure of the orbit, so it is unable to separate orbits

whose closures intersect. Indeed, a seminal result of Mumford [MFK94, Theorem 1.1] is

that continuous (or even polynomial) invariants capture orbit closure intersection: the

orbit closures of two tuples A and B do not intersect if and only if there is a polynomial

invariant p that separates them, i.e., p(A) ̸= p(B). A related question is that of the

orbit closure inclusion: when is A contained in the closure of the similarity orbit of B?

It is well-known that A and B are similar if and only if A is in the orbit closure of B

and B is in the orbit closure of A. Surprisingly, these orbit problems, i.e., orbit equiv-

alence, orbit closure intersection, and orbit closure inclusion have deep connections to

central problems in complexity theory, which was unearthed by Mulmuley and Sohoni’s

Geometric Complexity Theory (GCT) program [MS01, Mul17]. In particular, the VP

vs VNP conjecture (an algebraic analog of the celebrated P vs NP conjecture) can be

reformulated as the permanent vs determinant problem, the main problem for the GCT

approach and manifestly an orbit closure inclusion problem.

In 1985, Curto and Herrero conjectured [CH85, Conjecture 8.14] that A lies in the

closure of the similarity orbit of B if and only if rk f(A) ≤ rk f(B) for every noncommu-

tative polynomial f in m variables. Hadwin and Larson in 2003 gave a counterexample

[HL03, Example 5] to the (even weaker) two-sided Curto–Herrero conjecture: they pre-

sented matrix tuples A and B that are not similar but rk f(A) = rk f(B) for every

1As a comparison: it is well-known [Pro76] that traces of products of matrices and their complex

conjugates form a collection of separating invariants for simultaneous unitary similarity.
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noncommutative polynomial f . Furthermore, they proposed an ameliorated conjecture

[HL03, Conjecture 2]: A lies in the closure of the similarity orbit of B if and only if

rkF (A) ≤ rkF (B) for every matrix noncommutative polynomial F (i.e., a matrix of

noncommutative polynomials).

In this paper we prove the two-sided version of the Hadwin–Larson conjecture, and

provide a counterexample to its general version. Moreover, we show that only affine

linear matrix noncommutative polynomials F , called linear matrix pencils, of certain

size are required for testing rank equality in the two-sided version of the conjecture.

Theorem 1.1. The following are equivalent for A,B ∈ Matmn :

(i) A and B are similar;

(ii) for every T = (T0, . . . , Tm) ∈ Matm+1
mn ,

(1) rk (I ⊗ T0 + A1 ⊗ T1 + · · ·Am ⊗ Tm) = rk (I ⊗ T0 +B1 ⊗ T1 + · · ·Bm ⊗ Tm) .

In other words, ranks of linear matrix pencils evaluated at matrix tuples constitute a

collection of separating invariants for simultaneous similarity. Theorem 1.1 (or rather

Theorem 5.2 below addressing the left-right multiplication by invertible matrices) also

classifies completely rank-preserving maps [Mol99, CH02, CH04, HHY04]. This aspect

fits under the broader consideration of linear maps preserving various nonlinear proper-

ties, such as (complete) positivity. Furthermore, ranks of linear matrix pencils play an

important role in free real algebraic geometry; for example, pencils with same singular-

ity sets are described by noncommutative Nullstellensätze [KV17, HKV18, HKV21], and

low-rank values of a hermitian pencils correspond to extreme points of free spectrahedra

[EH19]. Ranks of matrix noncommutative polynomials also pertain to distributions of

noncommutative rational functions in free probability [ACSY+].

The proof of Theorem 1.1 is given in Section 3. It relies on representation theory

of finite-dimensional algebras [Aus82, FNS10] and matricization of homomorphisms

between finite-dimensional modules. Section 4 gives an analog of Theorem 1.1 for

symplectic and orthogonal similarity over an algebraically closed field, and strengthens

Theorem 1.1 for unitary and orthogonal similarity over a real closed field. In Section

5 we first derive a rank condition compatible with the left-right action of general lin-

ear groups on matrix tuples (Theorem 5.2); then we present a reduction of the orbit

equivalence under the left-right action of special linear groups to that of general linear

groups (Corollary 5.8). Section 6 shows that the general Hadwin–Larson conjecture

fails; the detailed counterexample is based on an example due to Jon F. Carlson arising

from degenerations of modules [Rie86, Bon96, Zwa00, Sma08]. Finally, algorithmic as-

pects of our results are collected in Section 7; in particular, we give a polynomial time

algorithm for SLp × SLq equivalence of matrix tuples (Algorithm 7.4).

Acknowledgment. The authors thank the American Institute of Mathematics for

hosting the workshop Noncommutative inequalities in June 2021 where this work was

initiated.
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2. Preliminaries

Throughout the paper let k be the underlying field of scalars (without any additional

assumptions unless stated otherwise). By Matp,q we denote the space of p× q matrices

over k; for square matrices we write Matp = Matp,p. Given X ∈ Matmp,q and P ∈ Matp,

Q ∈ Matq we write PXQ = (PX1Q, . . . , PXmQ). For i = 1, . . . ,m let ei denote the

column vector with m coordinates that has a 1 in the ith entry and 0s elsewhere.

Let k<x1, . . . , xm> be the free algebra of noncommutative polynomials over k in the

letters x1, . . . , xm. While the Hadwin–Larson conjecture [HL03, Conjecture 2] concerns

ranks of evaluations of arbitrary matrices over the free algebra, the following proposition

shows that it suffices to consider only affine linear matrices over the free algebra.

Proposition 2.1. For every F ∈ Matd ⊗k<x1, . . . , xm> there exists T = (T0, . . . , Tm) ∈
Matm+1

d′ such that

(2) rkF (A) = rk (I ⊗ T0 + A1 ⊗ T1 + · · ·Am ⊗ Tm)− (d′ − d)n

for all A ∈ Matmn and n ∈ N.

Proof. Higman’s linearization trick [Coh06, Section 8.5] states that

(3)

(
I f1
0 I

)(
f0 + f1f2 0

0 I

)(
I 0

−f2 I

)
=

(
f0 f1
−f2 I

)
for all matrices f0, f1, f2 (over k<x1, . . . , xm>) of compatible sizes. Applying (3)

recursively we see that there exists a linear matrix pencil L = T0 +
∑m

i=1 Tixi ∈
Matd′ ⊗k<x1, . . . , xm> such that

P (F ⊕ Id′−d)Q = L

for some invertible P,Q ∈ Matd′ ⊗k<x1, . . . , xm>. Then (2) clearly holds. □

While well-known to researchers in invariant theory, we state the connection between

orbit equivalence and orbit closure inclusion problems for the sake of completeness.

Lemma 2.2. Let A,B ∈ Matmn . Then A and B are similar if and only if A ∈ BGLn

and B ∈ AGLn.

Proof. Let C ∈ Matmn . Then the orbit CGLn is Zariski open in CGLn by [Hum97,

Proposition 8.3], and CGLn is an irreducible variety (since it is the closure of an image

of GLn). Therefore AGLn = BGLn is equivalent to AGLn = BGLn . □

3. Orbit equivalence under similarity

First we consider orbit equivalence for the action of GLn on Matmn by similarity. In

this setting, orbits correspond to isomorphism classes of n-dimensional modules over a

free algebra. At the heart of our reasoning is the following theorem of Auslander.
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Theorem 3.1 ([Aus82, Proposition 1.5]). Let Λ be a finite-dimensional k-algebra, and

let M and N be finite-dimensional Λ-modules. Then M ∼= N if and only if

(4) dimHom(X,M) = dimHom(X,N)

for all finite-dimensional Λ-modules X.

Here dim denotes the dimension of a vector space over k. We shall rely on the

following quantitative strengthening of Theorem 3.1 established in [FNS10]. Given the

setup as in Theorem 3.1, let L0 = M ⊕N and inductively define Li+1 = rad(EndΛ Li) ·
Li ⊂ Li. Then Ls+1 = {0} for large enough s, and we let L =

⊕s
i=0 Li. Let addL be

the smallest subcategory in the category of finitely generated Λ-modules that contains

L and is closed under direct sums and direct summands. By [FNS10, Proposition 5],

M and N are isomorphic if and only if (4) holds for all X ∈ addL. The construction

of Li is compatible with direct sums [FNS10, Remark 4]; namely, Li
∼= Mi ⊕ Ni for

some Mi ⊂ M and Ni ⊂ N . Consequently, every indecomposable direct summand

of L is isomorphic to a submodule of M or N by the Krull–Remak–Schmidt theorem

[Lam01, Corollary 19.22]. This leads to the following statement, alluded to in the proof

of [FNS10, Theorem 6].

Proposition 3.2 ([FNS10]). With the setup as in Theorem 3.1, M ∼= N if and only if

(5) dimHom(X,M) = dimHom(X,N)

for all indecomposable Λ-submodules X of M or N .

3.1. Proof of Theorem 1.1. A tuple C ∈ Matmn gives rise to a k<x1, . . . , xm>-module

MC , which is the vector space kn with xj acting on it by matrix multiplication with Cj.

Conversely, each finite-dimensional k<x1, . . . , xm>-module is given by a matrix tuple

in this way. Note that MA and MB are isomorphic as k<x1, . . . , xm>-modules if and

only if A and B are in the same orbit under the similarity action of GLn.

Lemma 3.3. Let A ∈ Matmn and C ∈ Matmp . Then dimHom(MC ,MA) equals the

dimension of the kernel of the mpn× pn matrix

(6)

 Ip ⊗ A1 − Ct
1 ⊗ In

...

Ip ⊗ Am − Ct
m ⊗ In

 =

−Ct
1

...

−Ct
m

⊗ In +
m∑
i=1

(ei ⊗ Ip)⊗ Ai.

Proof. The space Hom(MC ,MA) is precisely the set of matrices P ∈ Matn,p such that

PCi = AiP for all i. In other words, it is the kernel of the map Matn,p → Matmn,p
given by P 7→ (A1P − PC1, A2P − PC2, . . . , AmP − PCm). Writing this linear map in

coordinates gives us the matrix of (6). □

Proof of Theorem 1.1. (i)⇒(ii) clearly holds, so we consider (ii)⇒(i). Suppose that

A,B ∈ Matmn are not in the same GLn-orbit. Let Λ ⊂ Mat2n be the unital algebra

generated by A1 ⊕ B1, . . . , Am ⊕ Bm. Then we can view MA and MB as Λ-modules
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in a natural way. Since they are not isomorphic, by Proposition 3.2 there exists a Λ-

module X of dimension at most n such that dimHom(X,MA) ̸= dimHom(X,MB). As

a k<x1, . . . , xm>-module, X ∼= MC for some C ∈ Matmn . By Lemma 3.3 we have

rk
(−Ct

1
...

−Ct
m

⊗ In +
m∑
i=1

(ei ⊗ It)⊗ Ai

)
̸= rk

(−Ct
1

...

−Ct
m

⊗ In +
m∑
i=1

(ei ⊗ It)⊗Bi

)
.

Thus T0, . . . , Tm ∈ Matmn defined as

(7) T0 = −
m∑
j=1

(eje
t
1)⊗ Ct

j and Ti = (eie
t
1)⊗ It for i = 1, . . . ,m

satisfy

rk (I ⊗ T0 + A1 ⊗ T1 + · · ·Am ⊗ Tm) ̸= rk (I ⊗ T0 +B1 ⊗ T1 + · · ·Bm ⊗ Tm) . □

An algorithm for constructing a rank-disparity witness T in presence of a non-similar

pair of tuples is given in Section 7.1.

3.2. A bound independent of m. We can also replace the bound mn on the size of

matrices in Theorem 1.1(2) with one that that is independent of m and depends only

on n. For C = (C1, . . . , Cm) and I = {i1 < i2 < · · · < ik} ⊆ {1, . . . ,m} we define

CI = (Ci1 , Ci2 , . . . , Cik).

Lemma 3.4. Suppose A,B ∈ Matmn . Then A and B are similar if and only if AI and

BI are similar for all I ⊆ {1, . . . ,m} with |I| ≤ n2 + 1.

Proof. Clearly if A and B are similar, then so are AI and BI for all I. Now suppose

A and B are not similar. Take a basis {Ai1 , Ai2 , . . . , Aik} of span(A1, . . . , Am). Let

I = {i1, i2, . . . , ik}. Observe that k ≤ n2. If AI is not similar to BI , then we are done.

Otherwise let P ∈ GLn be such that PAIP
−1 = BI . Since A is not similar to B, we

have PAik+1
P−1 ̸= Bik+1

for some ik+1 /∈ I. Let I ′ = I ∪ {ik+1}. We claim that AI′ is

not similar to BI′ . Indeed, if it were, then QAI′Q
−1 = BI′ for some Q ∈ GLn. Since

Aik+1
=

∑
1≤j≤k λjAij for some λj ∈ k, it follows that

Bik+1
= QAik+1

Q−1 =
∑
j

λjQAijQ
−1 =

∑
j

λjBj =
∑
j

λjPAijP
−1 = PAik+1

P−1

which is a contradiction. Hence AI′ is not similar to BI′ and |I ′| ≤ k + 1 ≤ n2 + 1. □

Corollary 3.5. A,B ∈ Matmn are similar if and only if (1) holds for T ∈ Matm+1
n3+n.

Proof. Combine Theorem 1.1 and Lemma 3.4. □
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4. Orthogonal, symplectic and unitary similarity

In this section we derive the analog of Theorem 1.1 for groups preserving bilinear

forms. Throughout the section let k be either an algebraically closed field of character-

istic 0, or a real closed field. Given an involution ∗ on Matn and A = (A1, . . . , Am) ∈
Matmn let (A,A∗) = (A1, . . . , Am, A

∗
1, . . . , A

∗
m) ∈ Mat2mn .

Proposition 4.1. Let ∗ be an involution on Matn and G a subgroup of GLn in one of

the following setups:

(a) k is real closed or algebraically closed of characteristic 0, ∗ is the transpose and

G is the orthogonal group;

(b) n is even, k is algebraically closed of characteristic 0, ∗ is the symplectic invo-

lution and G is the symplectic group;

(c) k is the algebraic closure of a real closed field, ∗ is the conjugate transpose and

G is the unitary group.

Then A,B ∈ Matmn are G-similar if and only if (A,A∗), (B,B∗) ∈ Mat2mn are GLn-

similar.

Proof. If B = PAP−1 for P ∈ G, then also B∗ = PA∗P−1 since P ∗ = P−1. Conversely,

suppose that (A,A∗) and (B,B∗) are GLn-similar. Then for each word w in letters

x1, . . . , xm and x∗
1, . . . , x

∗
m, the matrices w(A,A∗) and w(B,B∗) are similar and thus

have the same trace. Then A and B are G-similar by [Pro76, Theorems 7.1, 15.3 and

16.4] in (a), [Pro76, Theorems 10.1 and 15.4] in (b), and [Pro76, Theorems 11.2 and

16.5] in (c). □

Corollary 4.2. Let ∗ and G be as in Proposition 4.1. Then A,B ∈ Matmn are G-similar

if and only if

rk
(
I ⊗ T0 +

m∑
i=1

(Ai ⊗ Ti + A∗
i ⊗ Ti+m)

)
= rk

(
I ⊗ T0 +

m∑
i=1

(Bi ⊗ Ti +B∗
i ⊗ Ti+m)

)
for all T ∈ Mat2m+1

2mn .

Proof. Combine Proposition 4.1 and Theorem 1.1. □

Using tools from real algebraic geometry [BCR98], Corollary 4.2 can be strengthened

for unitary involutions. Unless stated otherwise, for the rest of the section let k be the

algebraic closure of a real closed field, let ∗ be the conjugate transpose on Matn, and

Un ⊂ GLn the unitary group.

Lemma 4.3. Let C ∈ Matmp be such that the module M(C,C∗) is irreducible. For every

K ∈ Matmn such that M(C,C∗) does not embed into M(K,K∗), there exists T ∈ Matm(2m+1)p
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such that

dimker
(
I ⊗ I +

m∑
i=1

(Ci ⊗ Ti + C∗
i ⊗ T ∗

i )
)
= 1,

dimker
(
I ⊗ I +

m∑
i=1

(Ki ⊗ Ti +K∗
i ⊗ T ∗

i )
)
= 0.

Proof. By Lemma 3.3, the dimension of the kernel of

I ⊗ A1 − Ct
1 ⊗ I

...

I ⊗ Am − Ct
m ⊗ I

I ⊗ A∗
1 − C∗t

1 ⊗ I
...

I ⊗ A∗
m − C∗t

m ⊗ I


is 1 if A = C and 0 if A = K. Let R =

∑
i(C

∗t
i Ct

i + Ct
iC

∗t
i ) (which is invertible by

irreducibility); then the same conclusion holds for the matrix

(R−1 ⊗ I)

 I ⊗ A1 − Ct
1 ⊗ I

...

I ⊗ A∗
m − C∗t

m ⊗ I


∗ I ⊗ A1 − Ct

1 ⊗ I
...

I ⊗ A∗
m − C∗t

m ⊗ I


= I ⊗ I +

∑
i

R−1 ⊗ (A∗
iAi + AiA

∗
i )− 2

∑
i

(R−1Ct
i ⊗ A∗

i +R−1C∗t
i ⊗ Ai).

Furthermore, a Schur complement argument then implies that the dimension of the

kernel of

(8)


I ⊗ I −R−1 ⊗ A∗

1
. . .

...

I ⊗ I −R−1 ⊗ Am

I ⊗ A1 · · · I ⊗ A∗
m I ⊗ I − 2

∑
i(R

−1Ct
i ⊗ A∗

i +R−1C∗t
i ⊗ Ai)

 ,

where the missing blocks are zero, is 1 if A = C and 0 if A = K.

In the affine space Mat2m(2m+1)p consider the sets

X =

{
T ∈ Mat2m(2m+1)p : det

(
I ⊗ I +

∑
i

(Ci ⊗ Ti + C∗
i ⊗ Ti+m)

)
= 0

}
,

Y =

{
T ∈ Mat2m(2m+1)p : dim ker

(
I ⊗ I +

∑
i

(Ci ⊗ Ti + C∗
i ⊗ Ti+m)

)
= 1

& dimker
(
I ⊗ I +

∑
i

(Ki ⊗ Ti +K∗
i ⊗ Ti+m)

)
= 0

}
,

R =

{
T ∈ Mat2m(2m+1)p : Ti+m = T ∗

i for 1 ≤ i ≤ m

}
.
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Then Y is a Zariski open subset of the algebraic set X , and R is the set of real

points in Mat2m(2m+1)p with respect to the real structure (U, V ) 7→ (V ∗, U∗) for (U, V ) ∈
Matm(2m+1)p×Matm(2m+1)p = Mat2m(2m+1)p. Note that Y ̸= ∅ by (8). The determinant of

a monic hermitian pencil is a real zero polynomial [HV07], meaning it has only real

zeros along every line through the origin. Since X is therefore the zero set of a real

zero polynomial, it follows by [KV17, Proposition 5.1] that X ∩ R is Zariski dense in

X . Therefore Y ∩R ̸= ∅, which is the required conclusion. □

The next statement shows that for certifying unitary similarity with the rank equality

condition 1, instead of general (2m+1)-tuples as in Corollary 4.2 it suffices to consider

only those of a special form (I, T, T ∗) for an m-tuple T .

Theorem 4.4. The tuples A,B ∈ Matmn are Un-similar if and only if

rk
(
I ⊗ I +

m∑
i=1

(Ai ⊗ Ti + A∗
i ⊗ T ∗

i )
)
= rk

(
I ⊗ I +

m∑
i=1

(Bi ⊗ Ti +B∗
i ⊗ T ∗

i )
)

for all T ∈ Matm(2m+1)n.

Proof. The modules M(A,A∗) and M(B,B∗) are semisimple [Lam01, Page 90]. If they are

not isomorphic, then there exists an irreducible module M(C,C∗) for C ∈ Matmp for p ≤ n

that appears with distinct multiplicities in M(A,A∗) and M(B,B∗). Let M(K,K∗) be the

direct sum of all irreducible submodules in M(A,A∗) or M(B,B∗) that are not isomorphic

to M(C,C∗). Lemma 4.3 applied to C and K yields the desired matrix tuple T . □

Applying Theorem 4.4 to matrix tuples over the underlying real closed field gives the

following.

Corollary 4.5. Suppose k is a real closed field and On ⊂ GLn is the orthogonal group.

Then A,B ∈ Matmn are On-similar if and only if

rk
(
I ⊗ I +

m∑
i=1

(Ai ⊗ Ti + At
i ⊗ T t

i )
)
= rk

(
I ⊗ I +

m∑
i=1

(Bi ⊗ Ti +Bt
i ⊗ T t

i )
)

for all T ∈ Matm2(2m+1)n.

Proof. Note that (2m+ 1)n× (2m+ 1)n complex matrices ∗-embed into 2(2m+ 1)n×
2(2m + 1)n real matrices, so the statement follows by Theorem 4.4 and Proposition

4.1. □

Lastly, Lemma 4.3 also gives an improved matrix size bound, linear in m and in n,

for the quantum version [KV17, Corollary 5.7] of the Kippenhahn conjecture [Kip51,

Section 8].

Corollary 4.6. Let H ∈ Matmn be an irreducible tuple of hermitian matrices. There is

a tuple of hermitian matrices T ∈ Matm(m+1)n such that H1 ⊗ T1 + · · ·+Hm ⊗ Tm has a

simple nonzero eigenvalue.
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5. Orbit equivalence for the left-right action

The left-right action of GLp ×GLq (and its subgroup SLp × SLq) on matrix tuples by

simultaneous left and right multiplication has been of considerable interest in the past

few years. Hrubeš and Wigderson [HW14] showed that the orbit closure intersection

problem (more precisely, the so-called null cone membership problem for the left-right

action of SLn × SLn) captures the problem of non-commutative rational identity test-

ing. Identity testing problems are key to some of the deepest outstanding problems

in complexity theory, see [Mul17, KI04]. Polynomial time algorithms in this case were

obtained in recent years [GGOW16, IQS17, DM17, DM20]. These algorithms also in-

spired progress in other subjects like noncommutative geodesic optimization [BFGO19],

algebraic statistics [AKRS21, DM21], Brascamp-Lieb inequalities [GGOW18], and the

Paulsen problem [KLLR18].

Even amidst this flurry of activity, a polynomial time algorithm for the orbit equiva-

lence problem for the left-right action of SLp× SLq-action remained elusive. Note that

for the left-right action of GLp ×GLq, a polynomial time algorithm for the orbit equiva-

lence problems follows from the results of Brooksbank and Luks [BL08]. In this section,

we develop some structural results regarding orbit equivalence that we then use to give

polynomial time algorithms in Section 7.

5.1. GLp×GLq action. In this section we consider the action of GLp ×GLq on Matmp,q
by simultaneous left and right multiplication. Let Λm be the path algebra of the m-

Kronecker quiver. That is,

Λm = k<e, y1, . . . , ym | e2 = e, eyj = yj, yiyj = yje = 0> .

Every C ∈ Matmp,q determines a finite-dimensional Λm-moduleNC with dimension vector

(p, q) (and dimNC = p+ q), and vice versa [DW17, Section 7.1]. Concretely, e acts on

k
p×kq as the projection onto the first component, while yj acts by matrix multiplication

with ( 0 Cj

0 0
). Modules NA, NB for A,B ∈ Matmp,q are isomorphic if and only if A,B are

in the same GLp×GLq-orbit.

Lemma 5.1. Let A ∈ Matmp,q and C ∈ Matmr,s. Then dimHom(NA, NC) equals the

dimension of the kernel of the mps× (qs+ pr) matrix Is ⊗ A1 −Ct
1 ⊗ Ip

...
...

Is ⊗ Am −Ct
m ⊗ Ip

 =

∑m
i=1(ei ⊗ Is)⊗ Ai

−Ct
1

...

−Ct
m

⊗ Ip

 .

Proof. The space Hom(NC , NA) is identified with the set of pairs (P,Q) ∈ Matq,s×Matp,r
such thatQCi = AiP for all i. As in the proof of Lemma 3.3 we hence view Hom(NC , NA)

as the kernel of the linear map (P,Q) 7→ (A1P−QC1, . . . , AmP−QCm), and the matrix

representation of this map gives the desired conclusion. □

Theorem 5.2. The following are equivalent for A,B ∈ Matmp,q:
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(i) A and B are in the same GLp ×GLq-orbit;

(ii) for every T ∈ Matmmq−1,q,

rk (A1 ⊗ T1 + · · ·+ Am ⊗ Tm) = rk (B1 ⊗ T1 + · · ·+Bm ⊗ Tm) ;

(iii) for every T ∈ Matmp,mp−1,

rk (A1 ⊗ T1 + · · ·+ Am ⊗ Tm) = rk (B1 ⊗ T1 + · · ·+Bm ⊗ Tm) .

Proof. (i)⇒(ii),(iii) is straightforward. We only need to prove (ii)⇒(i) since (iii)⇒(i)

then follows from applying (ii)⇒(i) to At, Bt.

If A and B are not in the same GLp ×GLq-orbit, then by Proposition 3.2 there exists

C ∈ Matmp,q such that dimHom(NC , NA) ̸= dimHom(NC , NB). Let Q ∈ GLmq and

P ∈ GLp be such that

Q

−Ct
1

...

−Ct
m

P =

(
Ir 0

0 0

)
for r ≤ p. By Lemma 5.1 we have

rk

(∑
iQ(ei ⊗ Is)⊗ Ai

(
Ir 0

0 0

)
⊗ Ip

)
̸= rk

(∑
i Q(ei ⊗ Is)⊗Bi

(
Ir 0

0 0

)
⊗ Ip

)
.

Note that this can only happen if 0 < r < mq (the first inequality holds since C ̸= 0).

Let Ti ∈ Matmq−r,q be obtained by removing the first r rows of Q(ei ⊗ Iq). Then

rk(
∑

iAi ⊗ Ti) ̸= rk(
∑

i Bi ⊗ Ti). □

5.2. SLp × SLq action. Throughout this section let k be an algebraically closed field.

Orbit membership in Matmp,q under the left-right action of SLp× SLq is more subtle

than in the case of GLp ×GLq. If p = q = n and the tuples A,B ∈ Matmn are outside

the null cone of the SLn × SLn action, we can reduce the SLn× SLn equivalence to the

GLn similarity equivalence by using the ideas from [DM20]. On the other hand, if the

tuples are non-square or in the null cone, then SLp × SLq orbit membership requires a

more refined analysis appealing to some results on preprojective algebras for quivers.

Corresponding algorithms for checking SLp× SLq equivalence are given in Section 7.2.

5.2.1. Reduction from SLn × SLn to similarity when outside the null cone. When de-

tecting orbit equivalence of matrix tuples outside the null cone for the SLn× SLn-action,

the rank equality condition of Theorem 5.2 can be supplemented with a determinant

equality condition.

Proposition 5.3. Suppose A,B ∈ Matmn are in the same GLn×GLn orbit and not in

the null cone. Then A and B are not in the same SLn× SLn-times orbit if and only if

there exists d ∈ {n−1, n} such that for any choice of T ∈ Matmd with det(
∑m

i=1Ai⊗Ti) ̸=
0, we have det(

∑m
i=1Ai ⊗ Ti) ̸= det(

∑m
i=1Bi ⊗ Ti).
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Proof. (⇒) Suppose A and B are in the same SLn× SLn-orbit. Then clearly det(
∑

i Ai⊗
Ti) = det(

∑
i Bi ⊗ Ti) for all choices of T .

(⇐) Observe that A and µA are in the same SLn× SLn orbit if µ is an nth root

of unity because µI ∈ SLn. Now suppose A and B are not in the same SLn× SLn-

orbit, but in the same GLn ×GLn orbit. Thus λA is in the same SLn× SLn-orbit as

B for some λ ∈ C, where λ is not an nth root of unity. Therefore λdn ̸= 1 for some

d ∈ {n− 1, n}. Take d ∈ {n− 1, n} such that λdn ̸= 1 and choose any T ∈ Matmd such

that det(
∑

i Ai ⊗ Ti) ̸= 0. Then

det(
∑

iBi ⊗ Ti) = det(
∑

i λAi ⊗ Ti) = λdn det(
∑

iAi ⊗ Ti) ̸= det(
∑

i Ai ⊗ Ti). □

5.2.2. The general case. The matter of SLp× SLq equivalence of two points in Matmp,q
splits into two parts: the GLp ×GLq equivalence in Matmp,q (Theorem 5.2), and the

SLp× SLq equivalence of A and λA for A ∈ Matmp,q and λ ∈ C. In this section we

analyze the second part.

Lemma 5.4. Let A = (A1, . . . , Am) ∈ Matmp,q and suppose that Ai = ( Pi 0
0 Qi

) for each i

where Pi is of size k × ℓ and Qi of size (p − k) × (q − ℓ). If pℓ ̸= qk, then A and λA

are in the same SLp × SLq-orbit for every 0 ̸= λ ∈ C.

Proof. Choose µ such that µpℓ−qk = λ. Now let D1 = µ(p−k)qIk ⊕ µ−kqIp−k and D2 =

µp(ℓ−q)Iℓ ⊕ µpℓIq−ℓ. Then D1 ∈ SLp, D2 ∈ SLq and D1AD2 = µpℓ−qkA = λA. □

Lemma 5.5. Let A ∈ Matmp,q and consider the corresponding Λm-module NA. Then

the GLp×GLq-orbit of A contains ( P 0
0 Q ) where P ∈ Matmk,ℓ and Q ∈ Matmp−k,q−ℓ with

pℓ ̸= qk if and only if NA has a direct summand whose dimension vector is not parallel

to (p, q).

Proof. Straightforward. □

Lemma 5.6. Suppose A ∈ Matmp,q and let NA be the corresponding Λm-module. Suppose

that all the indecomposable direct summands in NA have dimension vectors parallel to

(p, q). Then A and λA are in the same SLp × SLq-orbit if and only if λ is an lcm(p, q)th

root of unity.

Proof. Let p′ = lcm(p,q)
q

and q′ = lcm(p,q)
p

.

(⇐) Suppose λ is an lcm(p, q)th root of unity. If a, b ∈ Z are such that ap′ + bq′ = 1,

then λbq′Ip ∈ SLp, λ
ap′Iq ∈ SLq and (λbq′Ip)A(λ

ap′Iq) = λA.

(⇒) Suppose there exists (P,Q) ∈ SLp× SLq such that PAQ = λA. Consider the

linear map L = LP,Q : Matp,q → Matp,q given by L(X) = PXQ. Since each Ai is an

eigenvector of L, it is also an eigenvector of Lss, the semisimple part of L (from the

Jordan–Chevalley decomposition). The map LP,Q is represented by the matrix P ⊗Qt.

Then Lss is represented by (P ⊗ Qt)ss = P ss ⊗ (Qt)ss, hence Lss = LP ss,Qss . Since

P ss and Qss have the same determinant as P and Q, we have (P ss, Qss) ∈ SLp× SLq
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and P ssAQss = λA. Thus, without loss of generality, we can assume P and Q are

semisimple.

We can then write P = gD1g
−1 and Q = hD2h

−1 for some g ∈ GLp, h ∈ GLq and

D1, D2 that are diagonal; D1 = α1Ip1 ⊕ · · · ⊕ αkIpk with pairwise distinct αi and D2 =

β1Iq1 ⊕ · · · ⊕ βℓIqℓ with pairwise distinct βj. Then D1A
′
iD2 = λA′

i, where A
′
i = g−1Aih.

It is straightforward to see that the dimension vectors of the indecomposable summands

of A′ = (A′
1, . . . , A

′
m) are the same as for A because NA

∼= NA′ .

Next we split each A′
t into a k× ℓ block matrix, where the (i, j) block has size pi× qj.

Then left and right multiplication by D1 and D2 scales the (i, j) block by αiβj. So if

this block is nonzero, we must have αiβj = λ. Since the αis are distinct and the βjs are

distinct, only one block in each block row and block column can be nonzero (and this

holds across all A′
ts simultaneously). In particular, each such block corresponds to a

direct summand of NA′ , so our hypothesis on the dimension vectors of indecomposable

summands implies pqj = qpi. Moreover, an entire block column (resp. block row)

cannot be zero because that yields a direct summand of dimension (1, 0) (resp. (0, 1)),

which contradicts the hypothesis. So we conclude that k = ℓ and, after a permutation

of block rows, pi = dip
′ and qi = diq

′ for some di ∈ N.
Then

1 = det(D1) =
∏
i

αpi
i =

(∏
i

αdi
i

)p′

,

1 = det(D2) =
∏
i

βqi
i =

(∏
i

(
λ

αi

)di )q′

= λq
(∏

i

αdi
i

)−q′

,

whence

λlcm(p,q) = λqp′ =
(∏

i

αdi
i

)p′q′

= 1. □

Specializing [DW17, Theorem 8.1.3] to the m-Kronecker quiver gives the following.

Proposition 5.7. Let A ∈ Matmp,q, and let NA be the corresponding Λm-module. Then

all the indecomposable direct summands of NA have dimension vectors parallel to (p, q)

if and only if there exists C ∈ Matmq,p such that
∑m

i=1AiCi = qIp and
∑m

i=1CiAi = pIq.

The SLp × SLq equivalence of A and λA is thus summarized as follows.

Corollary 5.8. Let A ∈ Matmp,q and λ ∈ C. Then A and λA lie in the same SLp× SLq-

orbit if and only if one of the following conditions hold:

(a) A = 0;

(b) λlcm(p,q) = 1;

(c) λ ̸= 0 and no C ∈ Matmq,p satisfies
∑m

i=1AiCi = qIp and
∑m

i=1CiAi = pIq.

Proof. The case A = 0 is trivial. Thus we can assume that A ̸= 0 and λ ̸= 0. If NA

admits an irreducible direct summand with dimension vector not parallel to (p, q), then
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by Lemmas 5.5, 5.4 and Proposition 5.7, A and λA are in the same orbit if and only if

(c) holds. Otherwise, A and λA are in the same orbit if and only if (b) holds by Lemma

5.6. □

6. Rank inequalities and orbit closure

In view of Proposition 2.1, the Hadwin–Larson conjecture [HL03, Conjecture 2] asks

whether the following are equivalent for A,B ∈ Matmn :

(a) A lies in the closure of the GLn-orbit of B;

(b) for all N ∈ N and T = (T0, . . . , Tm) ∈ Matm+1
N ,

rk (I ⊗ T0 + A1 ⊗ T1 + · · ·Am ⊗ Tm) ≤ rk (I ⊗ T0 +B1 ⊗ T1 + · · ·Bm ⊗ Tm) .

Note that (a)⇒(b) is clear because the rank of a matrix is lower semi-continuous. In

this section we present an explicit counterexample to the Hadwin–Larson conjecture.

In the language of degenerations of modules, it was given by Carlson [Rie86, Section

3.1] (see also [Bon96, Section 7.2]) to distinguish between degenerations and virtual

degenerations. Here we concretize it in terms of matrix tuples.

Let

B1 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

 , B2 =


0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

 , A1 = A2 = B1.

First we claim that (a) fails for A and B. That is, A is not in the closure of the

GL4-orbit of B. Let xij, yij be the coordinates of the affine space Mat24, and

p = x43y21 − x41y23 − x23y41 + x21y43.

A direct calculation shows that p(PB1P
−1, PB2P

−1) = 0 for every P ∈ GL4, and

p(A1, A2) = 2.

On the other hand, A⊕01 lies in the closure of the GL5-orbit of B⊕01 (the argument

in [Rie86, Section 3.1] implies that A⊕02 lies in the GL6-orbit closure of B⊕02). Indeed,

for t ̸= 0 let

Pt =


1 0 0 0 0

0 1 1 0 1

0 0 t2 0 0

0 0 0 t2 0

0 t −t 0 0

 ∈ GL5 .

Then

Pt(B ⊕ 01)P
−1
t =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

t 0 0 0 0

 ,


0 0 0 0 0

1 0 0 0 0

t2 0 0 0 0

0 0 1 0 t

−t 0 0 0 0



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and so A⊕ 01 = limt→0 Pt(B ⊕ 01)P
−1
t . Therefore (b) holds for A⊕ 01 and B ⊕ 01, and

consequently also for A and B.

The above example indicates that (a) above should be replaced by

(a’) for some ℓ ∈ N, A⊕ 0ℓ lies in the closure of the GLn+ℓ-orbit of B ⊕ 0ℓ.

The problem of equivalence of (a’) and (b) has a counterpart in representation theory.

There it is the open question whether the virtual degeneration order and the hom order

are equivalent [Sma08, Section 5] (more precisely, virtual degeneration allows for the

zero tuple 0ℓ in (a’) to be replaced by an arbitrary C ∈ Matmℓ ).

7. Algorithms

In this section we give algorithms pertaining to the main results of the paper. A

deterministic polynomial time algorithm for testing orbit equivalence under similarity

by GLn and the left-right action by GLp×GLq is a special case of the Brooksbank–

Luks algorithm for testing isomorphism of finite-dimensional modules over a finitely

generated algebra [BL08, Theorem 3.5] (incidentally, Algorithm 7.1 below also tests

similarity, although this is not its chief purpose). There is also a very straightforward

probabilistic procedure for testing similarity: given A,B ∈ Matmn , choose a random

solution P ∈ Matn of the linear system BP = PA; then A and B are similar if and

only if P is invertible.

7.1. Constructing a rank-disparity witness. Here we describe how, given a pair of

non-similar tuples A,B ∈ Matmn , one can produce a tuple that witnesses the violation

of the rank equality condition (1).

Algorithm 7.1. Construction of a rank-disparity witness.

Input: A,B ∈ Matmn .

Step 1: Construct the finite sequence of modules Li+1 = rad(EndLi) · Li.

Determining the endomorphism ring of a finite-dimensional module over a finite-

dimensional algebra amounts to solving a linear system, and likewise for deter-

mining the radical of a finite-dimensional algebra [FR85, Corollary 4.3].

Step 2: Find indecomposable summands in each Li.

This is done by determining the ranges of centrally primitive idempotents of the

semisimple part (as in the Wedderburn principal theorem) of the algebra EndLi

[CIK97, Theorem 6].

Step 3: For each indecomposable module MC from Step 2, construct a matrix tuple T

as in (7).

By Proposition 3.2 and the proof of Theorem 1.1, either one of them violates

(1) (in which case A and B are not similar), or A and B are similar.

Example 7.2. In the counterexample [HL03, Example 5] to the Curto–Herrero con-

jecture [CH85, Conjecture 8.14] it is shown that the pairs of 3 × 3 matrices A =
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(E12, E13) and B = (E21, E31) satisfy rk f(A) = rk f(B) for all f ∈ k<x1, x2>, and

rk(I ⊗ T0 + A1 ⊗ T1 + A2 ⊗ T2) ̸= rk(I ⊗ T0 +B1 ⊗ T1 +B2 ⊗ T2) for

T0 = 02, T1 =

(
1 0

0 0

)
, T2 =

(
0 0

1 0

)
.

This concrete witness T ∈ Mat32 arises from the 1-dimensional module M(01,01) which

is a direct summand in the 5-dimensional module L1 as per Algorithm 7.1. Both

3-dimensional indecomposable summands of L0 (namely, MA and MB) also give rank-

disparity witnesses (in Mat36).

7.2. Deciding orbit equivalence for the SLp× SLq action. We give two algorithms

for testing SLp× SLq equivalence, one for points outside the null cone when p = q, and

one for general points. Note that there is a deterministic polynomial time algorithm

for the null cone membership [IQS17, Theorem 1.5].

Proposition 5.3 leads to the following procedure.

Algorithm 7.3. SLn × SLn equivalence outside the null cone.

Input: A,B ∈ Matmn , not in the null cone.

Step 1: Check whether A and B are GLn×GLn-equivalent by applying [BL08, Theo-

rem 3.5]. If they are not, then A and B are not SLn× SLn-equivalent. Otherwise,

proceed to Step 2.

Step 2: Using [IQS17, Theorem 1.5], find T ∈ Matmn−1 and T ′ ∈ Matmn such that

det(
∑

i Ai ⊗ Ti) ̸= 0 and det(
∑

i Ai ⊗ T ′
i ) ̸= 0.

Step 3: A and B are SLn × SLn-equivalent if and only if det(
∑

i Ai⊗Ti) = det(
∑

iBi⊗
Ti) and det(

∑
i Ai ⊗ T ′

i ) = det(
∑

i Bi ⊗ T ′
i ).

This holds by Proposition 5.3.

Finally, we give an algorithmic counterpart of Corollary 5.8.

Algorithm 7.4. SLp × SLq equivalence in general.

Input: A,B ∈ Matmp,q.

Step 1: Using [BL08, Theorem 3.5], check whether A and B are GLp×GLq-equivalent,

and if so, produce (P,Q) ∈ GLp×GLq such that B = PAQ. If A and B are

not GLp×GLq-equivalent, then they are not SLp × SLq-equivalent. Otherwise,

proceed to Step 2.

Step 2: Check if the linear system
∑

i AiCi = qIp,
∑

i CiAi = pIq in C ∈ Matmq,p is

consistent. If not, then A and B are SLp × SLq-equivalent. Otherwise, proceed

to Step 3.

The validity of this step follows from Lemmas 5.4, 5.5 and Proposition 5.7.

Step 3: A and B are SLp× SLq-equivalent if and only if det(P ) det(Q) = 1.

Indeed, let λ be an lcm(p, q)th root of det(P ) det(Q). Then A and B are
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SLp× SLq-equivalent if and only if A and λA are. By Lemma 5.6, this is further

equivalent to λlcm(p,q) = 1.
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[ACSY+] O. Arizmendi, G. Cébron, R. Speicher, S. Yin: Universality of free random variables: atoms

for non-commutative rational functions, preprint https://arxiv.org/abs/2107.11507

[Aus82] M. Auslander: Representation theory of finite-dimensional algebras, in: Algebraists’ homage:

papers in ring theory and related topics (New Haven, Conn., 1981), 27–39, Contemp. Math. 13,

Amer. Math. Soc., 1982.

[Bon96] K. Bongartz: On degenerations and extensions of finite-dimensional modules, Adv. Math. 121

(1996) 245–287.

[BCR98] J. Bochnak, M. Coste, M. F. Roy: Real algebraic geometry, Results in Mathematics and

Related Areas 36, Springer, 1998.

[BL08] P. A. Brooksbank, E. M. Luks: Testing isomorphism of modules, J. Algebra 320 (2008) 4020–

4029.

[BFGO19] P. Bürgisser, C. Franks, A. Garg, R. Oliveira, M. Walter, A. Wigderson: Towards a theory

of non-commutative optimization: Geodesic 1st and 2nd order methods for moment maps and

polytopes, in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS),

IEEE (2019) 845–861.

[Coh06] P. M. Cohn: Free ideal rings and localization in general rings, New Mathematical Monographs

3, Cambridge University Press, 2006.

[CIK97] A. Chistov, G. Ivanyos, M. Karpinski: Polynomial time algorithms for modules over finite di-

mensional algebras, Proceedings of the 1997 International Symposium on Symbolic and Algebraic

Computation (Kihei, HI), 68–74, ACM, New York, 1997.

[CH85] R. E. Curto, D. A. Herrero: On closures of joint similarity orbits, Integral Equations Operator

Theory 8 (1985) 489–556.

[CH02] J. Cui, J. Hou: Linear maps on von Neumann algebras preserving zero products or TR-rank,

Bull. Austral. Math. Soc. 65 (2002) 79–91.

[CH04] J. Cui, J. Hou: Completely rank nonincreasing linear maps on nest algebras, Proc. Amer.

Math. Soc. 132 (2004) 1419–1428.

[DKS04] K. R. Davidson, D. W. Kribs, M. E. Shpigel: Isometric dilations of non-commuting finite

rank n-tuples, Canad. J. Math. 53 (2001) 506–545.

[DM17] H. Derksen, V. Makam: Polynomial degree bounds for matrix semi-invariants, Adv. Math.

310 (2017) 44–63.

[DM20] H. Derksen, V. Makam: Algorithms for orbit closure separation for invariants and semi-

invariants of matrices, Algebra Number Theory 14 (2020) 2791–2813.

[DM21] H. Derksen, V. Makam: Maximum likelihood estimation for matrix normal models via quiver

representations, SIAM J. Appl. Algebra Geom. 5 (2021) 338–365.

[DW17] H. Derksen, J. Weyman: An introduction to quiver representations, Graduate Studies in

Mathematics 184, American Mathematical Society, 2017.

[Dro80] Ju. A. Drozd: Tame and wild matrix problems, Representation theory II, 242–258, Lecture

Notes in Math. 832, Springer, 1980.

[EH88] D. Eisenbud, J. Harris: Vector spaces of matrices of low rank, Adv. Math. 70 (1988) 135–155.

https://arxiv.org/abs/2107.11507


18 HARM DERKSEN, IGOR KLEP, VISU MAKAM, AND JURIJ VOLČIČ
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