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Abstract state, trace, and moment polynomials are polynomial expressions in sev-
eral operator or random variables and positive functionals on their products (states,
traces or expectations). While these concepts, and in particular their positivity and
optimization, arose from problems in quantum information theory, yet they natu-
rally fit under the umbrella of multivariate operator theory. This survey presents
state, trace, and moment polynomials in a concise and unified way, and highlights
their similarities and differences. The focal point is their positivity and optimization.
Sums of squares certificates for unconstrained and constrained positivity (Positivstel-
lensätze) are given, and parallels with their commutative and freely noncommutative
analogs are discussed. They are used to design a convergent hierarchy of semidefinite
programs for optimization of state, trace, and moment polynomials. Finally, circling
back to the original motivation behind the derived theory, multiple applications in
quantum information theory are outlined.
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1 Introduction

Polynomial optimization problems appear in many fields of science and engineering.
They consist of minimizing a given polynomial 𝑓 in several commutative variables
𝑥 = (𝑥1, . . . , 𝑥𝑛) on a set defined by finitely many polynomial (in)equalities. Since
exact computation of the minimum of 𝑓 turns out to be NP-hard [49], an intense
amount of research rather focused on computing approximations. This optimization
problem is strongly related to the problem of representing nonnegative polynomials
with sums of squares (SOS) certificates, these latter objects being at the corner-
stone of real algebraic geometry [55]. Artin’s solution of Hilbert’s 17th problem
allows one to represent a globally nonnegative polynomial 𝑓 as an SOS of rational
functions, while in the constrained case, Schmüdgen’s Positivstellensatz [72] and
Putinar’s Positivstellensatz [68] certify the positivity of 𝑓 with weighted SOS poly-
nomials. The duality between polynomials positive on a set defined by polynomial
(in)equalities and probability measures supported on this set connects SOS-based
representations with necessary conditions to solve the moment problem on this set;
see the monographs [48, 74] dedicated to this topic. About two decades ago, Lasserre
provided in [47] a general hierarchical framework to approximate the minimum of
𝑓 from below. Under mild assumptions, slightly stronger than compactness of the
feasible set, this latter hierarchy converges to the minimum of 𝑓 as a consequence of
Putinar’s Positivstellensatz [68]. At each step of the hierarchy, a lower bound 𝛼 of the
minimum is obtained by means of semidefinite programming (SDP) [81], a special
class of convex optimization problems consisting of minimizing a linear function
under linear matrix inequality constraints. In addition to 𝛼, the SDP program returns
a weighted SOS decomposition of 𝑓 −𝛼, each weight corresponding to a polynomial
involved in the set of constraints. Overall this weighted SOS decomposition certi-
fies the nonnegativity of 𝑓 − 𝛼 on the feasible set. Similar techniques can analyze
dynamical systems involving polynomial input data. We refer the interested reader
to the recent monograph [32] focusing on control and analysis of such dynamical
systems.

The above concepts of positivity and SOS decompositions can be extended to the
noncommutative setting by replacing the commutative variables 𝑥 = (𝑥1, . . . , 𝑥𝑛)
by freely noncommutative variables. Multivariate polynomial inequalities in such
matrix or operator variables appear in many scientific fields, including quantum
statistical mechanics [11, 78], control systems [77, 62], quantum information the-
ory [2, 66], operator algebras [61, 16] and free probability [24, 38]. The associated
problems are typically dimension-independent: that is, one is interested in validity of
inequalities for matrices of all sizes, or one wishes to optimize an objective function
over bounded operators on Hilbert spaces of arbitrary dimension. This dimension-
free aspect impedes direct applicability of results from real algebraic geometry to
these multivariate operator inequalities. However, the fundamental principles nev-
ertheless transfer into the noncommutative setting, sometimes with even stronger
implications than in the commutative setting. A seminal example is the resolution of
the noncommutative analog of Hilbert’s 17th problem, established independently by
Helton [29] and McCullough [57]: noncommutative polynomials that are positive
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semidefinite on all matrix tuples are sums of squares of noncommutative polynomi-
als. This breakthrough naturally led to new possibilities in noncommutative polyno-
mial optimization. Under an analogous assumption as in the commutative setting,
converging SDP-based hierarchies allow one to approximate as closely as desired
the minimal eigenvalue or trace of a noncommutative polynomial subject to finitely
many polynomial inequality constraints, as a consequence of Helton-McCullough
Positivstellensatz [27]. The dual approach via the noncommutative moment prob-
lem was developed independently, motivated by quantum information theory. The
groundbreaking Navascués-Pironio-Acı́n hierarchy [60] allows one to readily com-
pute upper bounds over the maximal violation levels of linear Bell inequalities (see
also [13]), while [64] generalizes this dual SDP-hierarchy to general noncommuta-
tive polynomial optimization problems. Furthermore, while the above developments
concern eigenvalue optimization of noncommutative polynomials, similar advances
on trace optimization of noncommutative polynomials were also achieved [8]. Its
applications include bounds on entanglement dimensions [22], matrix factorization
ranks [23], and perfect strategies for synchronous quantum non-local games [3, 7].
The related algorithmic developments have been implemented in various libraries,
such as Ncpol2sdpa [82], NCSOStools [10], NCalgebra [28], TSSOS [53, Ap-
pendix B], available in Python, Matlab, Mathematica and Julia, respectively. We
refer the interested reader to [4] for a short introduction on noncommutative poly-
nomial optimization and to [9] for a more comprehensive treatise.

Recent advances in quantum information theory have motivated new develop-
ments in the field of operator theory to characterize positivity and optimize wider
classes of polynomial functions on operator tuples: state, trace, and moment polyno-
mials. These objects are polynomials in operator variables and either states, traces, or
expectations of their products, respectively. This survey summarizes the related re-
search efforts and outlines applications in entanglement detection, quantum network
correlations, quantum uncertainties, and quantum codes.

2 Noncommutative and state polynomials

Throughout the text let 𝑥 = (𝑥1, . . . , 𝑥𝑛) be freely noncommuting variables. Let <𝑥>
be the set of all words in 𝑥 (the free monoid generated by 𝑥), with the empty word
1. The free ∗-algebra C<𝑥> of noncommutative polynomials in 𝑥 with coefficients
C is endowed with a unique C-skew linear involution ∗ that makes 𝑥 𝑗 hermitian,
𝑥∗
𝑗
= 𝑥 𝑗 .1 To the monoid <𝑥> we also assign a commutative algebra as follows. With

each 1 ≠ 𝑤 ∈ <𝑥> we associate a commutative indeterminate 𝜍 (𝑤), and let

𝒮 = C
[
𝜍 (𝑤) : 𝑤 ∈ <𝑥> \{1}

]
.

1 Likewise, one can set up framework for non-hermitian variables 𝑧 𝑗 , and consider the free ∗-algebra
C⟨𝑧1, . . . , 𝑧𝑛 , 𝑧

∗
1 , . . . , 𝑧

∗
𝑛 ⟩ generated by them and their formal adjoints. All the ensuing statements

correspond to analogs for C⟨𝑥1, . . . , 𝑥2𝑛 ⟩ generated by 2𝑛 hermitian variables. Thus, we restrict
to hermitian variables for simplicity.
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Then 𝒮 is a polynomial ∗-algebra on countably many generators, with a C-skew
linear involution determined by 𝜍 (𝑤)∗ = 𝜍 (𝑤∗). Elements of 𝒮 are called state
polynomials. Combining commutative and noncommutative aspects, the ∗-algebra
of noncommutative state polynomials is 𝒮<𝑥> = 𝒮 ⊗C C<𝑥>. The 𝜍 notation
extends to a natural 𝒮-linear unital map 𝜍 : 𝒮<𝑥> → 𝒮. The real subspaces of self-
adjoint elements 𝑓 = 𝑓 ∗ in C<𝑥>, 𝒮, 𝒮<𝑥> are denoted C<𝑥>sa, 𝒮sa, 𝒮<𝑥>sa,
and we write re(𝑔) = 1

2 (𝑔 + 𝑔
∗), im(𝑔) = 1

2𝑖 (𝑔 − 𝑔
∗).

Noncommutative state polynomials are therefore formal polynomial expressions
involving the noncommuting variables and 𝜍 symbols in their words. In this survey,
we wish to furthermore view them as multivariate functions in operator variables
and states. To do this, we first recall some standard notions from functional analysis
[71, 79]. Let H be a complex Hilbert space. Let B(H) denote the ∗-algebra of
bounded operators on H . When H = C𝑘 we identify B(H) with 𝑘 × 𝑘 matrices
𝑀𝑘 (C). If 𝐴 ∈ B(H) then 𝐴 ⪰ 0 denotes that 𝐴 is a positive semidefinite operator.
A state on H is a positive unital linear functional 𝜆 : B(H) → C. Every unit vector
𝑢 ∈ H determines a state 𝜆(𝑋) = ⟨𝑋𝑢, 𝑢⟩, which is called a vector state. More
generally, if 𝜌 ∈ B(H) is a density operator (a positive semidefinite trace-class
operator with trace 1), then 𝜆(𝑋) = tr(𝜌𝑋) is a state. Let S(H) denote the set of all
states on B(H).

Let 𝑓 ∈ 𝒮<𝑥> be a noncommutative state polynomial, 𝑋 = (𝑋1, . . . , 𝑋𝑛) a tuple
of self-adjoint bounded operators on a Hilbert space H , and 𝜆 : B(H) → C a state.
The state evaluation of 𝑓 at (𝜆, 𝑋) is 𝑓 (𝜆, 𝑋) ∈ B(H) defined in a natural way,
by replacing 𝑥 𝑗 and 𝜍 in 𝑓 with 𝑋 𝑗 and 𝜆, respectively. In the same way we define
state evaluations for state polynomials; if 𝑓 ∈ 𝒮 then 𝑓 (𝜆, 𝑋) ∈ C. The involution
on noncommutative state polynomials is compatible with the usual involution on
B(H); in particular, if 𝑓 ∈ 𝒮<𝑥>sa (resp. 𝑓 ∈ 𝒮

sa) then 𝑓 (𝜆, 𝑋) is self-adjoint
(resp. real) for all 𝜆 and 𝑋 as above.

One can generalize this formalism by adding several independent state symbols
𝜍1, 𝜍2, . . . and consider evaluations on tuples of operators and several states, and
then suitably extend the subsequent results presented in this survey; however, for the
sake of simplicity we persist in working with a single formal state symbol 𝜍 .

2.1 State semialgebraic sets

A central topic of this paper is positivity of state polynomials. More precisely,
we are interested in certifying whether a state polynomial is nonnegative under all
state evaluations at operators and states that satisfy given noncommutative state
constraints. To formalize this, let 𝐶 ⊂ 𝒮<𝑥>sa be a set of constraints. Let H be a
separable infinite-dimensional Hilbert space; note that up to isomorphism, there is
only one such Hilbert space, so one may fix H = ℓ2 (N). To 𝐶 we assign two closely
related state semialgebraic sets:
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D∞ (𝐶) =
{
(𝜆, 𝑋) ∈ S(H) × B(H)𝑛 : 𝑋∗

𝑗 = 𝑋 𝑗 , 𝑐(𝜆, 𝑋) ⪰ 0 for all 𝑐 ∈ 𝐶
}
,

Dfin (𝐶) =
⋃
𝑘∈N

{
(𝜆, 𝑋) ∈ S(C𝑘) × M𝑘 (C)𝑛 : 𝑋∗

𝑗 = 𝑋 𝑗 , 𝑐(𝜆, 𝑋) ⪰ 0 for all 𝑐 ∈ 𝐶
}
.

The terminology originates from real algebraic geometry [56], where semialgebraic
sets are solution sets of polynomial inequalities. Let us briefly compare the two
variants of state semialgebraic sets. As mentioned above, D∞ (𝐶) is essentially
independent of the concrete realization of a separable infinite-dimensional Hilbert
space H . Also, one can view Dfin (𝐶) as a subset of D∞ (𝐶) (by embedding the
matrix algebras 𝑀𝑘 (C) into B(H) as unital ∗-subalgebras). However, Dfin (𝐶) may
be much smaller than D∞ (𝐶) (from the perspective of state polynomial positivity),
as the following example shows.

Example 1 Write 𝑧 = 𝑥1 + 𝑖𝑥2 and let 𝐶 = {𝑧∗𝑧 − 1}. Note that (𝑋1, 𝑋2) ∈ Dfin (𝐶)
precisely when the singular values of 𝑍 = 𝑋1 + 𝑖𝑋2 lie in [1,∞). Let 𝑓 = 𝜍 (𝑧𝑧∗) − 1.
Then 𝑓 ≥ 0 on Dfin (𝐶) because 𝑍𝑍∗ − 𝐼 ⪰ 0 for any square matrix 𝑍 satisfying
𝑍∗𝑍 ⪰ 𝐼. On the other hand, 𝑓 ̸≥ 0 on D∞ (𝐶). Indeed, let 𝑅 ∈ B(ℓ2 (N)) be the
right shift, and 𝑋1 = re(𝑅), 𝑋2 = im(𝑅). Note that 𝑅∗𝑅 = 𝐼. Let 𝜆 be the vector
state given by the vector 𝑢 = (1, 0, 0, . . . ) ∈ ℓ2 (N); notice that 𝑅∗𝑢 = 0. Then
(𝜆, 𝑋) ∈ D∞ (𝐶) because 𝑅∗𝑅 = 𝐼, and

𝑓 (𝜆, 𝑋) = ⟨𝑅𝑅∗𝑢, 𝑢⟩ − 1 = −1.

Example 1 shows that state polynomial positivity on all finite-dimensional Hilbert
spaces is in general strictly weaker than state polynomial positivity on infinite di-
mensional Hilbert spaces. There are natural conditions under which there is no gap
between finite-dimensional and infinite-dimensional picture, e.g., when Dfin (𝐶) is
matrix convex [31], which is particularly of interest in control theory. On the other
hand, in quantum information theory, one of the most important sources for non-
commutative optimization applications, no-communication imposes commutation
relations on pairs of operator variables; in this case, the gap between Dfin (𝐶) and
D∞ (𝐶) exists (by the negative answer to Connes’ embedding problem [37]) and
carries fundamental implications for the quantum theory.

From the perspective of state polynomial positivity, one can restrict D∞ (𝐶) and
Dfin (𝐶) to only vector states, and all the results in this survey stay unchanged. This is
due to the Gelfand-Naimark-Segal (GNS) construction, which allows one to replace
general states with vector states (cf. purification of mixed quantum states in quantum
physics).

As defined above, state semialgebraic sets are solution sets of noncommuta-
tive state polynomial inequalities. This framework in particular encloses equality
constraints. For example, if one wants to restrict operators 𝑋 satisfying a noncom-
mutative polynomial equation 𝑝(𝑋) = 0, then one can achieve that by considering
the constraint set containing ±re(𝑝),±im(𝑝).
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2.2 State quadratic modules

Let 𝐶 ⊂ 𝒮<𝑥>sa be a constraint set. Next we look at state polynomials which are
nonnegative on D∞ (𝐶) “for obvious reasons”. The state quadratic module QM(𝐶)
generated by 𝐶 is the subset of 𝒮 consisting of elements of the form∑︁

𝑗

𝜍 ( 𝑓 ∗𝑗 𝑐 𝑗 𝑓 𝑗 ), 𝑓 𝑗 ∈ 𝒮<𝑥>, 𝑐 𝑗 ∈ {1} ∪ 𝐶. (1)

It is straightforward to see that elements (1) are nonnegative on D∞ (𝐶), and so
𝑞 ≥ 0 on D∞ (𝐶) for all 𝑞 ∈ QM(𝐶). Section 4 below investigates weak converses
of this observation.

From the perspective of real algebraic geometry [56], QM(𝐶) is a quadratic
module in𝒮, in the sense that it is closed under addition and multiplication by squares
of elements from𝒮. Following this terminology, QM(𝐶) is an archimedean quadratic
module in𝒮 if for every 𝑓 ∈ 𝒮

sa there exists 𝑁 ∈ N such that 𝑁− 𝑓 , 𝑁+ 𝑓 ∈ QM(𝐶).
Archimedeanity is an important property in real algebraic geometry and operator
algebras, and plays a crucial role in various commutative and noncommutative
Positivstellensätze on bounded domains [69, 30]. In the state polynomial framework,
we will say that the set of constraints 𝐶 is archimedean if there exists 𝑁 > 0 such
that

𝑁 − 𝑥2
1 − · · · − 𝑥2

𝑛 =
∑︁
𝑗

𝑓 ∗𝑗 𝑐 𝑗 𝑓 𝑗 for some 𝑓 𝑗 ∈ 𝒮<𝑥>, 𝑐 𝑗 ∈ {1} ∪ 𝐶. (2)

If 𝐶 is archimedean, then QM(𝐶) is archimedean as a quadratic module in 𝒮.
Furthermore, note that if 𝐶 is archimedean, then D∞ (𝐶) is bounded. Indeed, if
𝑁 > 0 is such that (2) holds, then ∥𝑋 𝑗 ∥ ≤

√
𝑁 for all 𝑋 ∈ D∞ (𝐶) and 𝑗 = 1, . . . , 𝑛.

Conversely, if D∞ (𝐶) is bounded in the sense that ∥𝑋 𝑗 ∥ ≤ 𝑁 for all 𝑋 ∈ D∞ (𝐶),
one can simply add 𝑛𝑁2 − ∑

𝑗 𝑥
2
𝑗

to 𝐶 to obtain an archimedean constraint set.
Archimedeanity is a mild condition in applications of state polynomial positivity.

Many optimization problems pertaining to state polynomials are concerned with
bounded feasible domains. For example, state polynomial optimization problems in
quantum physics are typically interested in operator variables that are projections,
and thus include constraints of the form ±(𝑥 𝑗 − 𝑥2

𝑗
) for 𝑗 = 1, . . . , 𝑛. Such constraint

sets are archimedean because

𝑛 −
𝑛∑︁
𝑗=1
𝑥2
𝑗 =

𝑛∑︁
𝑗=1

(1 − 𝑥 𝑗 )2 +
𝑛∑︁
𝑗=1

2(𝑥 𝑗 − 𝑥2
𝑗 ),

which has the desired form (2).
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3 Trace and moment polynomials

There are two other constructions closely related to state polynomials, namely trace
polynomials [44, 33, 39] and moment polynomials [5, 40].

Trace polynomials originate in invariant theory, and their operator evaluations
emerge in free probability and von Neumann algebras. As the name indicates, trace
polynomials are polynomial expressions of traces of products of variables, subject to
the fundamental property of the trace tr(𝑎𝑏) = tr(𝑏𝑎). There are two natural ways of
evaluating such trace symbols: either as a usual trace (e.g. on matrices, or trace-class
operators) or as a normalized trace tr𝐼 = 1 (e.g. rescaled trace on matrices, or tracial
states on C*-algebras). The first option is well-understood when one is interested in
evaluations on matrices of fixed dimension. On the other hand, the second option
can be viewed as a special case of state evaluations where one restricts to tracial
states. Namely, one considers state polynomials on state semialgebraic sets D∞ (𝐶)
where 𝐶 contains

±re(𝜍 (𝑢𝑣) − 𝜍 (𝑣𝑢)), ±im(𝜍 (𝑢𝑣) − 𝜍 (𝑣𝑢)) for all 𝑢, 𝑣 ∈ <𝑥> .

It is important to stress that this dimension-independent framework applies only
to evaluations involving normalized trace. Positivity of trace evaluations on matri-
ces of all sizes using the (usual) non-normalized trace behaves quite differently. For
example, deciding whether a univariate polynomial is nonnegative on all matrix eval-
uations with the normalized trace is a semialgebraic problem, and in particular such
trace polynomials admit SOS representations with denominators [42]; in contrast,
deciding whether a univariate polynomial is nonnegative on all matrix evaluations
with the non-normalized trace cannot reduce to a semialgebraic problem, leading to
certain undecidability phenomena [1].

The other relatives of state polynomials are moment polynomials, which natu-
rally arise in probability, statistics, and moment problems. Moment polynomials are
polynomial expressions in mixed moments of random variables on a probability
space. By the spectral theorem (see e.g. [73]), states on polynomials in 𝑛 commuting
bounded self-adjoint operators correspond to integrals of polynomials in random
variables with respect to Borel probability measures. Thus moment polynomials
may be viewed as state polynomials in commuting variables. The commutativity
condition can be encoded into constraints, so moment polynomials are realized as
state polynomials on state semialgebraic sets D∞ (𝐶) where 𝐶 contains

±re(𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖), ±im(𝑥𝑖𝑥 𝑗 − 𝑥 𝑗𝑥𝑖) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Due to the above relationships, some results for state polynomial positivity on state
semialgebraic with reasonably general sets of constraints (e.g. Theorem 2 below)
carry direct implications for trace and moment polynomials. In practice, one usually
implements the additional relations directly into the framework by appropriating the
defining features of the state symbol (𝜍 (𝑢𝑣) = 𝜍 (𝑣𝑢) for trace polynomials, 𝑥𝑖𝑥 𝑗 =
𝑥 𝑗𝑥𝑖 for moment polynomials). While problems on trace or moment polynomial
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positivity can be reduced to problems on state polynomial positivity as explained
above, this perspective is sometimes too reductive. Namely, tracial and commutative
constraints are rather special in a certain sense. In order to obtain compelling results
about trace and moment polynomial positivity, it is important to leverage deeper
specific results associated with these constraints. Concretely, one can often apply
either invariant and representation theory of the symmetric group [67, 33, 36] and
commutative algebra and moment problems [74, 5] to obtain stronger statements for
trace and moment polynomials, respectively.

A comparative example

The following toy example (in two operator variables 𝑥1 = 𝑥 and 𝑥2 = 𝑦) illustrates
the distinction between state, trace, and moment polynomials (for a more elaborate
example arising from a nonlinear Bell inequality, see [41, Example 7.2.3]). It also
demonstrates that establishing dimension-independent operator inequalities may be
intricate even in rather simple-looking instances (below we demonstrate that for the
trace polynomial framework).
State regime. We look at the values of the state polynomial

𝑓 =
1
2

(
𝜍 (𝑥𝑦𝑥𝑦) + 𝜍 (𝑦𝑥𝑦𝑥)

)
− 𝜍 (𝑥𝑦𝑥)𝜍 (𝑦)

subject to constraints 𝑥2 = 𝑥 and 𝑦2 = 𝑦 (i.e., we are interested in its state evaluations
on pairs of projections). Notice that 𝑓 (𝜆, (𝑋,𝑌 )) = − 1

16 for

𝑋 =

(
1 0
0 0

)
, 𝑌 =

1
2

(
1 1
1 1

)
, 𝜆(·) = ⟨ · 𝑣, 𝑣⟩ for 𝑣 =

1
2

( √︁
2 −

√
2

−
√︁

2 +
√

2

)
.

Trace regime. In contrast, as a trace polynomial (i.e., a state polynomial restricted
to tracial states), the minimum of 𝑓 is − 1

27 . Indeed, for every pair of projections 𝑋,𝑌
and a tracial state 𝜏 one has

𝑓 (𝜏, (𝑋,𝑌 )) = 𝜏(𝑋𝑌𝑋𝑌 ) − 𝜏(𝑋𝑌 )𝜏(𝑌 ).

It is well-known (see e.g. [63]) that, up to unitary change of basis, every irreducible
pair of projections is one of the following:

(0, 0), (1, 0), (0, 1), (1, 1),
( (

1 0
0 0

)
,

(
𝑡

√
𝑡 − 𝑡2√

𝑡 − 𝑡2 1 − 𝑡

) )
for 0 < 𝑡 < 1.

Let us denote these pairs as (𝑋1, 𝑌1), . . . , (𝑋4, 𝑌4), (𝑋5 (𝑡), 𝑌5 (𝑡)). Thus, there exists
a probability measure 𝜋 on {0, 1}2∪]0, 1[ such that (𝑋,𝑌 ) is unitarily equivalent to
the direct integral of the above irreducible representations with respect to 𝜋, while 𝜏
is the direct integral of the corresponding normalized traces (see [79, Section IV.8]



State, trace, and moment polynomials 9

for a comprehensive study of direct integrals). We can decompose 𝜋 as

𝜋 = 𝛼1𝛿 (0,0) + 𝛼2𝛿 (1,0) + 𝛼3𝛿 (0,1) + 𝛼4𝛿 (1,1) + 𝛼5𝜈,

where 𝛿 (𝑖, 𝑗 ) is the Dirac delta measure at (𝑖, 𝑗), 𝜈 is a probability measure on the
interval ]0, 1[, and 𝛼 𝑗 ≥ 0,

∑
𝑗 𝛼 𝑗 = 1. Then

𝜏
(
𝑝(𝑋,𝑌 )

)
=

4∑︁
𝑗=1
𝛼 𝑗 𝑝(𝑋 𝑗 , 𝑌 𝑗 ) + 𝛼5

∫
1
2

tr𝑝
(
𝑋5 (𝑡), 𝑌5 (𝑡)

)
d𝜈(𝑡),

for every bivariate noncommutative polynomial 𝑝, where 1
2 tr is the normalized trace

on 2 × 2 matrices. In particular,

𝑓 (𝜏, (𝑋,𝑌 )) =
(
𝛼4 + 𝛼5

∫
𝑡2

2
d𝜈

)
−

(
𝛼4 + 𝛼5

∫
𝑡

2
d𝜈

) (
𝛼3 + 𝛼4 + 𝛼5

∫
1
2

d𝜈
)

= 𝛼4

(
1 −

(
𝛼3 + 𝛼4 +

𝛼5
2

))
+ 𝛼5

2

∫ (
𝑡2 −

(
𝛼3 + 𝛼4 +

𝛼5
2

)
𝑡

)
d𝜈

≥ 𝛼4

(
1 −

(
𝛼3 + 𝛼4 +

𝛼5
2

))
− 𝛼5

8

(
𝛼3 + 𝛼4 +

𝛼5
2

)2

=: 𝑝(𝛼3, 𝛼4, 𝛼5),

which is at least − 1
27 by standard constrained optimization arguments (namely, by

evaluating 𝑝 at its stationary points in the simplex {𝛼3, 𝛼4, 𝛼5 ≥ 0, 𝛼3 + 𝛼4 +
𝛼5 ≤ 1}, and at stationary points of 𝑝’s restriction to the boundary). The minimum
𝑓 (𝜏, (𝑋,𝑌 )) = − 1

27 is attained at

𝑋 =
©­«
1 0 0
0 0 0
0 0 0

ª®¬ , 𝑌 =
1
3

©­«
1

√
2 0√

2 2 0
0 0 3

ª®¬ , 𝜏 the normalized trace on 3 × 3 matrices.

Moment regime. Finally, as a moment polynomial (i.e., a state polynomial restricted
to commuting operators), 𝑓 can be interpreted as a polynomial expression in mixed
moments with respect to a probability measure 𝜇 of two commuting random variables
𝑋,𝑌 valued in {0, 1}. In this case,

𝑓 (𝜇, (𝑋,𝑌 )) = 1
2

(∫
(𝑋𝑌 )2 d𝜇 +

∫
(𝑌𝑋)2 d𝜇

)
−

∫
𝑋𝑌𝑋 d𝜇

∫
𝑌 d𝜇

=

∫
𝑋𝑌 d𝜇 −

∫
𝑋𝑌 d𝜇

∫
𝑌 d𝜇

=

∫
𝑋𝑌 d𝜇

∫
(1 − 𝑌 ) d𝜇 ≥ 0.

An SOS approach (assisted with semidefinite optimization) for establishing lower
bounds on state and tracial evaluations of 𝑓 is outlined in Example 2 below.
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4 Two Positivstellensätze

This section presents two main SOS certificates for positive state polynomials. They
are essentially disjoint in scope, assumptions, implications and proof techniques.

4.1 Hilbert-Artin theorem for state polynomials

First we consider state polynomial positivity in the completely unconstrained case.
The following theorem can be seen as the resolution of a state polynomial variant of
Hilbert’s 17th problem.

Theorem 1 ([41]) The following are equivalent for 𝑓 ∈ 𝒮
sa:

(i) 𝑓 ≥ 0 on Dfin (∅);
(ii) 𝑓 ≥ 0 on D∞ (∅);

(iii) 𝑓 is a quotient of sums of products of elements of the form 𝜍 (ℎ∗ℎ) for ℎ ∈ 𝒮<𝑥>.

For example, 𝜍 (𝑥2
1)𝜍 (𝑥

2
2) − 𝜍 (𝑥1𝑥2)𝜍 (𝑥2𝑥1) is an everywhere nonnegative state

polynomial (cf. Cauchy-Schwarz inequality); this can be certified in a purely alge-
braic way as

𝜍 (𝑥2
1)𝜍 (𝑥

2
2)−𝜍 (𝑥1𝑥2)𝜍 (𝑥2𝑥1) =

𝜍

( (
𝜍 (𝑥2

2)𝑥1 − 𝜍 (𝑥2𝑥1)𝑥2
)∗ (
𝜍 (𝑥2

2)𝑥1 − 𝜍 (𝑥2𝑥1)𝑥2
) )

𝜍 (𝑥2
2)

.

The implication (ii)⇒(i) is immediate, and the implication (iii)⇒(ii) is routine
(special care is only required at state evaluations where the denominator of 𝑓 van-
ishes). On the other hand, the implication (i)⇒(iii) is the core of Theorem 1, and it
relies on results intertwining real algebra and invariant theory [44, 42] and a trun-
cated algebraic variant of the GNS construction [31]. One particular consequence
of Theorem 1 is that for unconstrained state polynomial positivity, there is no differ-
ence between operator state evaluations and matricial state evaluations of all finite
dimensions (as opposed to the constrained setup, such as Example 1).

The algebraic certificate (iii) in Theorem 1 has similar shortcomings than its
classical analog (solution of Hilbert’s 17th problem). Namely, quotients are indeed
required; in other words, while not every nonnegative state polynomial are in QM(∅),
closing this set under products and quotients describes all nonnegative state poly-
nomials. Furthermore, the complexity of the algebraic certificate in (iii) cannot be
bounded by the degree of 𝑓 in general.

Trace and moment analogs of Theorem 1 fail. More precisely, the tracial analog of
Theorem 1 holds for 𝑛 = 1 (only one operator variable) [42]. For (at least some) 𝑛 > 1,
the failure of (i)⇒(ii) in Theorem 1 for trace polynomial positivity is equivalent to the
refutation of Connes’ embedding problem [37, 43]. Moreover, (ii)⇒(iii) in Theorem
1 for trace polynomial positivity likewise fails; nevertheless, there is a weak SOS
certificate with denominators for trace-positive noncommutative polynomials on
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tracial von Neumann algebras [43]. Similarly, moment polynomials nonnegative on
all measures do not necessarily admit an SOS certificate as in Theorem 1; concrete
examples are given in [5, 40]. Nevertheless, every nonnegative moment polynomial
admits an SOS representation after an arbitrarily small perturbation of its (possibly
high-degree) coefficients [40]; this perturbative Positivstellensatz is established with
intrinsically commutative tools and might not hold for state or trace polynomials.

4.2 Archimedean Positivstellensatz for state polynomials

Next, we consider state polynomials that are positive on bounded state semialgebraic
sets. Let𝐶 ⊂ 𝒮<𝑥>sa be a constraint set. Since we are interested in bounded domains,
it is reasonable to assume that 𝐶 is archimedean, as seen in Section 2. In general,
there is a difference between positivity on Dfin (𝐶) and positivity on D∞ (𝐶) (one
can modify Example 1 by enlarging 𝐶 to obtain an archimedean constraint set). The
latter one admits an algebraic certificate in the spirit of Putinar’s Positivstellensatz
[69] for classical polynomials and the Helton-McCullough Positivstellensatz [30]
for noncommutative polynomials.

Theorem 2 ([41]) Let𝐶 ⊂ 𝒮<𝑥>sa be an archimedean constraint set. The following
are equivalent for 𝑓 ∈ 𝒮

sa:

(i) 𝑓 ≥ 0 on D∞ (𝐶);
(ii) 𝑓 + 𝜀 ∈ QM(𝐶) for every 𝜀 > 0.

The implication (ii)⇒(i) is straightforward. The proof of (i)⇒(ii) essentially de-
composes into two steps, a commutative one and a noncommutative one. If 𝑓 is
a state polynomial for which (ii) fails, then one first shows that there is a formal
evaluation (homomorphism into C) on 𝒮 that is negative at 𝑓 but nonnegative on
QM(𝐶). This is a commutative problem, resolved by the Kadison-Dubois repre-
sentation theorem that relies on QM(𝐶) being archimedean. Afterwards, one uses
the GNS construction (on the free algebra [30]) to show that such an evaluation is
actually a state evaluation, resulting in a point in D∞ (𝐶) where 𝑓 is negative.

Theorem 2 has a somewhat more analytic flavor than Theorem 1. Also, while the
positivity certificate in Theorem 1 requires denominators (and products), the one in
Theorem 2 instead relies on the perturbation of the constant term. As explained in
Section 5 below, this feature is important for state polynomial optimization.

One can also derive a certificate for positivity of noncommutative state poly-
nomials on bounded state semialgebraic sets involving an auxiliary self-adjoint
noncommuting variable 𝑥0 (freely independent of 𝑥1, . . . , 𝑥𝑛).

Corollary 1 Let 𝐶 ⊂ 𝒮<𝑥>sa be an archimedean constraint set. Let 𝑥0 be an
auxiliary self-adjoint variable. The following are equivalent for 𝑓 ∈ 𝒮<𝑥>sa:

(i) 𝑓 ⪰ 0 on D∞ (𝐶);
(ii) 𝜍 (𝑥0 𝑓 𝑥0) + 𝜀 ∈ QM(𝐶 ∪ {±(1 − 𝑥2

0)}) for every 𝜀 > 0.
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Here, QM(𝐶 ∪ {±(1− 𝑥2
0)}) is a state quadratic module within state polynomials in

variables 𝑥0, . . . , 𝑥𝑛.

Proof. Note that𝐶′ = 𝐶∪{±(1−𝑥2
0)} is archimedean. Thus by Theorem 2 it suffices

to show that (i) is equivalent to

(i’) 𝜍 (𝑥0 𝑓 𝑥0) ≥ 0 on D∞ (𝐶′).

First suppose that (i) holds. Let (𝜆, 𝑋0, 𝑋) ∈ D∞ (𝐶′) be arbitrary. Then 𝑓 (𝜆, 𝑋) ⪰ 0
by assumption, so 𝑋0 𝑓 (𝜆, 𝑋)𝑋0 ⪰ 0 and thus

𝜍 (𝑥0 𝑓 𝑥0)
(
𝜆, 𝑋0, 𝑋

)
= 𝜆

(
𝑋0 𝑓 (𝜆, 𝑋)𝑋0

)
≥ 0,

so (i’) holds. Now suppose (i) does not hold, and let (𝜆, 𝑋) ∈ D∞ (𝐶) be such that
𝑓 (𝜆, 𝑋) is not positive semidefinite. By the GNS construction, we can without loss
of generality assume that 𝜆 is a vector state, given by the unit vector 𝑢 ∈ H . Let
𝑣 ∈ H be a unit vector such that ⟨ 𝑓 (𝜆, 𝑋)𝑣, 𝑣⟩ < 0. It is easy to see that there exists
a self-adjoint unitary 𝑋0 such that 𝑋0𝑢 = 𝛼𝑣 for some 𝛼 ∈ C with |𝛼 | = 1. Then
(𝜆, 𝑋0, 𝑋) ∈ D∞ (𝐶′) and

𝜍 (𝑥0 𝑓 𝑥0)
(
𝜆, 𝑋0, 𝑋

)
= 𝜆

(
𝑋0 𝑓 (𝜆, 𝑋)𝑋0

)
= ⟨𝑋0 𝑓 (𝜆, 𝑋)𝑋0𝑢, 𝑢⟩ = ⟨ 𝑓 (𝜆, 𝑋)𝑣, 𝑣⟩ < 0,

so (i’) does not hold. ⊓⊔

5 SDP hierarchies for optimization of state, trace, and moment
polynomials

Theorem 2 leads to a semidefinite programming (SDP) hierarchy for state polynomial
optimization on bounded state semialgebraic sets. Given 𝐶 ⊂ 𝒮<𝑥> and 𝑓 ∈ 𝒮

sa

consider the optimization problem

𝛼∗ = inf
{
𝑓 (𝜆, 𝑋) : (𝜆, 𝑋) ∈ D∞ (𝐶)

}
. (3)

Various problems in quantum physics can be reduced to state polynomial optimiza-
tion problems of the form (3); see Section 6 and references within for examples. For
𝑑 ∈ N let

QM(𝐶)𝑑 =

{∑︁
𝑗

𝜍 ( 𝑓 ∗𝑗 𝑐 𝑗 𝑓 𝑗 ) : 𝑓 𝑗 ∈ 𝒮<𝑥>, 𝑐 𝑗 ∈ {1} ∪ 𝐶, deg( 𝑓 ∗𝑗 𝑐 𝑗 𝑓 𝑗 ) ≤ 2𝑑

}
,

where deg denotes the total degree of a noncommutative state polynomial with
respect to 𝑥1, . . . , 𝑥𝑛 (appearing freely or within the state symbol 𝜍). Then the
QM(𝐶)𝑑 form an increasing sequence of convex cones in 𝒮, whose union equals
QM(𝐶). Denote

𝛼𝑑 = sup
{
𝛼 ∈ R : 𝑓 − 𝛼 ∈ QM(𝐶)𝑑

}
. (4)
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Computing 𝛼𝑑 can be reformulated as an SDP. Furthermore, Theorem 2 then implies
the following.

Corollary 2 Let 𝐶 ⊂ 𝒮<𝑥>sa be an archimedean constraint set, and 𝑓 ∈ 𝒮
sa. Then

(𝛼𝑑)𝑑 is an increasing sequence converging to the solution 𝛼∗ of (3).

The SDP hierarchy (4) and Corollary 2 are also applicable to optimization of trace
and moment polynomials by adding tracial and commutation relations, respectively,
to 𝐶 as in Subsection 3. In practice, one implements these relations (and other
equality constraints from 𝐶) directly into symbolic manipulation while preparing
the SDP input (as reduction rules, or using Gröbner bases).

Example 2 Recall 𝑓 = 1
2 (𝜍 (𝑥𝑦𝑥𝑦) + 𝜍 (𝑦𝑥𝑦𝑥)) − 𝜍 (𝑥𝑦𝑥)𝜍 (𝑦) on pairs of projections

in the comparative example from Section 3. Denote 𝐶 = {±(𝑥 − 𝑥2),±(𝑦 − 𝑦2)}.
Using an SDP solver one obtains

sup
{
𝛼 ∈ R : 𝑓 − 𝛼 ∈ QM(𝐶)5

}
= − 1

16

numerically. Together with Section 3, this indicates that the minimum of 𝑓 on
D∞ (𝐶) is − 1

16 . When only tracial states are considered (namely, 𝑓 is viewed as a
trace polynomial), one extends 𝐶 to 𝐶′ = 𝐶 ∪ {±(𝜍 (𝑢𝑣 − 𝑣𝑢) : 𝑢, 𝑣 ∈ <𝑥, 𝑦>} and
applies an SDP solver to compute

sup
{
𝛼 ∈ R : 𝑓 − 𝛼 ∈ QM(𝐶′)4

}
= − 1

27
.

This gives an alternative to the argument in Section 3 for the lower bound of the
trace polynomial 𝑓 on pairs of projections. Note that in this instance, proving that
the state polynomial 𝑓 + 1

16 is nonnegative on pair of projections requires a sum of
squares of degree 2 · 5 = 10 (one can check that a lower degree is not sufficient); on
the other hand, for the trace polynomial 𝑓 + 1

27 one only requires a sum of squares
of degree 2 · 4 = 8.

A comprehensive study of this SDP hierarchy is presented in [41, Section 6], while
the details about their refinements for trace polynomials and moment polynomials
are given in [39, Section 5] and [40, Section 5], respectively.

For the purposes of this survey let us briefly address the dual SDP hierarchy. The
dual of SDP (4) corresponds to optimizing 𝐿 ( 𝑓 ) over all unital linear functionals 𝐿
that are nonnegative on the convex cone QM(𝐶)𝑑 . While solutions of an SDP and
its dual SDP are generally distinct (that is, only weak duality is guaranteed), there is
no duality gap for SDPs (4) if the constraint set 𝐶 is archimedean in the following
strong sense: there is 𝑁 > 0 such that

𝑁 − 𝑥2
1 − · · · − 𝑥2

𝑛 =
∑︁
𝑗

𝑝∗𝑗 𝑝 𝑗 +
∑︁
𝑘

𝜆𝑘𝑐𝑘 ,

for some affine 𝑝 𝑗 ∈ C<𝑥>, 𝜆𝑘 ∈ R≥0 and quadratic 𝑐𝑘 ∈ 𝐶. In particular, one
can always satisfy this condition by simply adding 𝑁 − 𝑥2

1 − · · · − 𝑥2
𝑛 to the set.
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Thus one can replace (4) by its dual, which is sometimes more convenient for
implementation. Furthermore, there is a sufficient condition that enables one to
extract a finite-dimensional optimizer for (4) out of its dual (this condition is based
on the matrix rank of the semidefinite constraint of the dual solution). Also, strong
duality allows one to use primal-dual interior point methods, which are the most
widely implemented SDP algorithms, for solving (4).

In practice, the dual SDP is implemented via (multivariate) Hankel matrices.
As for quadratic modules, let 𝒮<𝑥>sa

𝑑
be the subset of state polynomials with total

degree at most 𝑑. For state polynomial optimization, we associate to a unital linear
functional 𝐿 : 𝒮<𝑥>sa

2𝑑 → C the Hankel matrix Γ(𝐿) indexed by all words 𝑢, 𝑣 of
𝒮<𝑥>sa

𝑑
with Γ𝑢,𝑣 (𝐿) = 𝐿 (𝜍 (𝑢★𝑣)). Then the positivity of 𝐿 relates to the positive

semidefiniteness of its associated Hankel matrix Γ(𝐿). Similarly, to each 𝑐 ∈ 𝐶

with 𝑑𝑐 = ⌈deg 𝑐/2⌉, we associate the so-called localizing matrix Γ(𝑐 𝐿) indexed by
all words 𝑢, 𝑣 of 𝒮<𝑥>sa

𝑑−𝑑𝑐 with Γ𝑢,𝑣 (𝑐 𝐿) = 𝐿 (𝜍 (𝑢★𝑐𝑣)). While the hierarchy (4)
is the analog of the Helton-McCullough approach to noncommutative polynomial
positivity [30], its dual is the analog of the renowned NPA hierarchy [64], and Γ(𝐿)
plays the role of the noncommutative moment matrix in the NPA hierarchy.

As in the primal SDP hierarchy (4), one tends to implement equality constraints
as reduction rules when preparing the SDP input. For the dual problem, there is
also an alternative approach, proposed in [54, Definition 3.2]: once a collection of
constraints satisfies the Archimedean condition, any further equality constraint 𝑐 = 0
can be imposed on 𝐿 by requiring 𝐿 (𝑐2) = 0 (instead of Γ(±𝑐 𝐿) ⪰ 0).

As an example, the following are Hankel matrices for state, trace, and moment
polynomial optimization problems (in two variables 𝑥1 = 𝑥 and 𝑥2 = 𝑦) at the second
level of the hierarchy.
State regime. Suppose one wants to maximize 𝑓 = 𝜍 (𝑥)2 + 𝜍 (𝑦)2 on 𝑥, 𝑦 such that
1 − 𝑥2 ⪰ 0 and 1 − 𝑦2 ⪰ 0. Any Hankel matrix at the second level of the hierarchy
is then indexed by all state monomials of degree at most two,

1, 𝑥, 𝑦, 𝜍 (𝑥), 𝜍 (𝑦), 𝑥2, 𝑦2, 𝑥𝑦, 𝑦𝑥, 𝑥𝜍 (𝑥), 𝑥𝜍 (𝑦), 𝑦𝜍 (𝑥), 𝑦𝜍 (𝑦),
𝜍 (𝑥2), 𝜍 (𝑦)2, 𝜍 (𝑥𝑦), 𝜍 (𝑦𝑥), 𝜍 (𝑥)2, 𝜍 (𝑦)2, 𝜍 (𝑥)𝜍 (𝑦).

Given a unital linear functional 𝐿 : 𝒮<𝑥>sa
4 → C, the associated Hankel matrix

Γ(𝐿) is



1 𝑥 𝑦 𝜍 (𝑥) ... 𝑥𝑦 ... 𝜍 (𝑥) 𝜍 (𝑦)
1 𝐿 (𝜍 (𝑥 ) ) 𝐿 (𝜍 (𝑦) ) 𝐿 (𝜍 (𝑥 ) ) 𝐿 (𝜍 (𝑥𝑦) ) 𝐿 (𝜍 (𝑥 ) 𝜍 (𝑦) )
𝐿 (𝜍 (𝑥 )2 ) 𝐿 (𝜍 (𝑥 ) 𝜍 (𝑦) ) 𝐿 (𝜍 (𝑥 )2 ) 𝐿 (𝜍 (𝑥2𝑦) ) 𝐿 (𝜍 (𝑥 )2 𝜍 (𝑦) )

𝐿 (𝜍 (𝑦)2 ) 𝐿 (𝜍 (𝑦) 𝜍 (𝑥 ) ) 𝐿 (𝜍 (𝑦𝑥𝑦) ) 𝐿 (𝜍 (𝑥 ) 𝜍 (𝑦)2 )
𝐿 (𝜍 (𝑥 )2 ) 𝐿 (𝜍 (𝑥 ) 𝜍 (𝑥𝑦) ) 𝐿 (𝜍 (𝑥 )2 𝜍 (𝑦) )

𝐿 (𝜍 (𝑦𝑥2𝑦) ) 𝐿 (𝜍 (𝑦𝑥 ) 𝜍 (𝑥 ) 𝜍 (𝑦) )

𝐿 (𝜍 (𝑥 )2 𝜍 (𝑦)2 )


.

We can define similarly the two localizing matrices Γ((1− 𝑥2)𝐿) and Γ((1− 𝑦2)𝐿),
indexed by all state monomials of degree at most one, i.e., 1, 𝑥, 𝑦, 𝜍 (𝑥), 𝜍 (𝑦). To find
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an upper bound on 𝑓 , one then maximizes 𝐿 ( 𝑓 ) over all unital linear functionals 𝐿
being nonnegative on 𝑄𝑀 (𝐶)2, or equivalently over the set of positive semidefinite
matrices that have the same structure as the above-mentioned state Hankel and
localizing matrices. The statement of Corollary 2 then implies that when the indexing
sequence includes all monomials of degree 𝑑 with 𝑑 → ∞, the optimum of 𝑓 is
achieved.
Trace regime. For trace polynomials we demand that the state is tracial, satisfying
re(𝜍 (𝑢𝑣) − 𝜍 (𝑣𝑢)) = im(𝜍 (𝑢𝑣) − 𝜍 (𝑣𝑢)) = 0 for all 𝑢, 𝑣 ∈ <𝑥, 𝑦>. In our example,
this implies the 𝜍 (𝑥𝑦) = 𝜍 (𝑦𝑥), 𝜍 (𝑥2𝑦2) = 𝜍 (𝑦2𝑥2) , 𝜍 (𝑥𝑦𝑥𝑦) = 𝜍 (𝑦𝑥𝑦𝑥), etc. on
the set of tracial Hankel matrices.
Moment regime. For trace polynomials we demand that the operators commute,
that is 𝑢𝑣 = 𝑣𝑢 for all 𝑢, 𝑣 ∈ <𝑥, 𝑦>. This implies the constraints 𝜍 (𝑥𝑦) = 𝜍 (𝑥𝑦),
𝜍 (𝑥𝑦𝑥𝑦) = 𝜍 (𝑥2𝑦2) = 𝜍 (𝑦2𝑥2) = 𝜍 (𝑦𝑥𝑦𝑥) etc. on the set of moment Hankel matri-
ces.

It is thus clear that constraints become more restrictive from state to trace to
moment regime. Or in other words, one has the inclusion 𝑆𝑚 ⊆ 𝑆𝑡 ⊆ 𝑆𝑠 where
𝑆𝑚, 𝑆𝑡 , 𝑆𝑠 are the feasible sets involving moment, tracial and state Hankel matrices,
respectively.

6 Applications

Several problems in quantum information theory can be formulated as state, trace or
moment polynomial optimization problems. In this section we present a selection of
such problems, and sketch how the SDP hierarchy from Section 5 applies to them.
For the sake of compatibility with the motivation literature, we adopt some of the
physics notation in this section, such as † in place of ∗, for example.

6.1 Entanglement in Werner states

Quantum entanglement accounts for the non-classical correlations appearing in mul-
tipartite quantum systems. A quantum state 𝜚 on (C𝑑)⊗𝑛 (here we view 𝜚 as a density
operator) is separable if it can be written as a convex combination of product states,

𝜚 =
∑︁
𝑖

𝑝𝑖 𝜚
(𝑖)
1 ⊗ · · · ⊗ 𝜚

(𝑖)
𝑛 ,

where 𝑝𝑖 ≥ 0,
∑
𝑖 𝑝𝑖 = 1, and 𝜚 (𝑖)

𝑗
are states on C𝑑 . If no such decomposition exists,

the state is termed entangled. Determining whether a state is separable or entangled
is a computationally hard problem [25, 19].

Let us denote the set of separable states in (C𝑑)⊗𝑛 as SEP(𝑛, 𝑑) and the set of en-
tangled states as ENT(𝑛, 𝑑). A method to detect entanglement is that of entanglement



16 Felix Huber and Victor Magron and Jurij Volčič

witnesses: a hermitian operator is an entanglement witness if

tr(W𝜚) ≥ 0 for all 𝜚 ∈ SEP(𝑛, 𝑑), and
tr(W𝜑) < 0 for some 𝜑 ∈ ENT(𝑛, 𝑑).

Thus a witness acts as a separating hyperplane in the state space for the set of
separable states. Here we show how witnesses for the so-called Werner states can be
obtained from the trace polynomial optimization framework. What follows is based
on [35] (see also [14, 33]).

Werner states are invariant under the adjoint diagonal action of unitaries, that
is, 𝑈⊗𝑛𝜚(𝑈⊗𝑛)† = 𝜚 for all 𝑈 ∈ U(𝑑). The Schur-Weyl duality states that the
commutant of𝑈⊗𝑛 on (C𝑑)⊗𝑛 is the algebra generated by the permutation operators
𝜂𝑑 (𝜎) for 𝜎 ∈ 𝑆𝑛, whose action is given by

𝜂𝑑 (𝜋) |𝑣1⟩ ⊗ · · · ⊗ |𝑣𝑛⟩ = |𝑣𝜎−1 (1)⟩ ⊗ · · · ⊗ |𝑣𝜎−1 (𝑛)⟩ .

As a consequence, one can write 𝜚 =
∑
𝜎∈𝑆𝑛 𝑎𝜎𝜂𝑑 (𝜎) with 𝑎𝜎 ∈ C. The same

invariance can be imposed upon W, and so one writes W =
∑
𝜎∈𝑆𝑛 𝑤𝜎𝜂𝑑 (𝜎).

Furthermore, under this symmetry the Hilbert space decomposes as

(C𝑑)⊗𝑛 ≃
⊕
𝜆⊢𝑛

ht(𝜆)≤𝑑

U𝜆 ⊗ S𝜆,

where the unitary group U(𝑑) acts on the spaces U𝜆 and the symmetric group 𝑆𝑛
on the spaces S𝜆, and the representations are labeled by partitions 𝜆 of 𝑛 of height
at most 𝑑. As a consequence, the state 𝜚 block-diagonalizes as

𝜚 =
⊕
𝜆⊢𝑛

ht(𝜆)≤𝑑

𝐼 ⊗ 𝜚𝜆,

where 𝐼 is the maximally mixed state on U𝜆 (i.e., a suitable multiple of the identity).
This allows to show the following.

Theorem 3 ([35]) For every entangled Werner state there exists a witness 𝑤 ∈ C𝑆𝑛
satisfying

tr
(
𝜂𝑑 (𝑤)𝜚

)
≥ 0 for all 𝜚 ∈ SEP(𝑑, 𝑛), ∀𝑑 ∈ N.

Such witness has a nonnegative expectation value on all separable states in all
dimensions, and is thus called dimension-free. The key idea in the proof is that given
a witness 𝑤 in dimension 𝑑′ < 𝑑, it can be promoted to a witness 𝑤̃ = 𝑤 + 𝑢 in all
dimensions by adding an element 𝑢 ⪰ 0 whose support lies exclusively in partitions
of height larger than 𝑑 (but at most 𝑛). The existence of such 𝑢 was established in
[35].

Now consider the task of finding such witnesses. If a permutation 𝜎 decomposed
into cycles as 𝜎 = (𝛼1 . . . 𝛼𝑟 ) . . . (𝜉1 . . . 𝜉𝑡 ) ∈ 𝑆𝑛, then the following identity holds:
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tr
(
𝜂𝑑 (𝜎−1) (𝑋1 ⊗ · · · ⊗ 𝑋𝑛)

)
= tr

(
𝑋𝛼1 · · · 𝑋𝛼𝑟

)
· · · tr

(
𝑋𝜉1 · · · 𝑋𝜉𝑡

)
.

That is, permutations acting on tensor products are mapped to trace polynomials. For
an element 𝑤 ∈ C𝑆𝑛 to correspond to a dimension-free Werner state witness, one
requires that min tr

(
𝜂𝑛 (𝑤)𝜚

)
≥ 0 for all 𝜚 ∈ SEP(𝑛, 𝑛). Such minimum is attained

at the extreme points of the separable set, which consists of pure product states. One
thus requires that

𝑝 = min
|𝜙1 ⟩,..., |𝜙𝑛 ⟩∈C𝑛

tr
(
𝜂𝑛 (𝑤) |𝜙1⟩⟨𝜙1 | ⊗ · · · ⊗ |𝜙𝑛⟩⟨𝜙𝑛 |

)
≥ 0,

which corresponds to a trace polynomial in the variables |𝜙1⟩⟨𝜙1 |, . . . , |𝜙𝑛⟩⟨𝜙𝑛 |.
We now strengthen the domain of nonnegativity in the above optimization problem
by asking for the positivity of 𝑝 for all projections from any tracial von Neumann
algebra. This can be done through the SDP hierarchy as in Section 5 (see [35] for
details).

6.2 Nonlinear Bell inequalities

One of the motivating applications for state polynomial optimization is finding
maximal violations of nonlinear Bell inequalities, as outlined in this section (see
[41, 51] for details).

A quantum network [15, 66, 80] consists of several non-communicating parties
with measurements (modelled by projection-valued measures), some of which share
independent multipartite quantum states. The correlation of such a model refers
to the array of conditional expectations of joint measurement outputs relative to
given inputs. The correlation is classical if it can be reproduced by a model with
shared classical randomness in place of quantum states. The simplest (and most
well-understood) quantum networks are multipartite Bell scenarios, where several
parties share a single common state. The set of possible correlations is convex in
this setup, and its geometry is studied by linear Bell inequalities (functionals that are
nonnegative on the set of correlations). While verifying validity of a Bell inequality
on the set of classical correlations is straightforward (because of convexity, one can
restrict to checking finitely many deterministic models), to establish Bell inequalities
on the set of quantum correlations one typically utilizes the NPA hierarchy [60] for
noncommutative polynomial optimization.

However, the set of correlations for a network that is not a multipartite Bell
scenario is in general not convex (not even if restricted to classical correlations).
For this reason, there is no hope of describing it using linear Bell inequalities; a
reasonable next step is to study the set of correlations using nonlinear Bell inequal-
ities (yet there is no guarantee that these completely distinguish between different
networks; to resolve this, the inflation technique was recently introduced [83]). Non-
linear Bell inequalities are given polynomial expressions in conditional expectations
arising from the model. When restricted to classical correlations, these are moment
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polynomials in probability measures that govern shared randomness in the network.
When all quantum correlations are considered, these are state polynomials whose
noncommuting variables correspond to the projective measurements, and the formal
state corresponds to the quantum state of the model.

Let us add more details about the above outline for the bilocal scenario, which is
the simplest network with a nonconvex set of correlations. The network consists of
three non-communicating parties and an independent pair of states, where the middle
party shares a state with each of the other parties. This scenario is represented by three
Hilbert spaces H𝐴,H𝐵′ ⊗ H𝐵′′ ,H𝐶 , ensembles of projections 𝐴𝑖 ∈ B(H𝐴), 𝐵 𝑗 ∈
B(H𝐵′ ⊗ H𝐵′′ ), 𝐶𝑘 ∈ B(H𝐶 ), and two states 𝜌𝐴𝐵 on H𝐴 ⊗ H𝐵′ and 𝜌𝐵𝐶 on
H𝐵′′ ⊗ H𝐶 . The correlation of this model is given by

tr
( (
𝜌𝐴𝐵 ⊗ 𝜌𝐵𝐶

) (
𝐴𝑖 ⊗ 𝐵 𝑗 ⊗ 𝐶𝐾

) )
, (5)

where with a slight abuse of notation the tensors are arranged in a compatible
fashion. The idea of modeling (5) with commutative symbols representing states on
operators, and mimicking the tensor product structure with factorization relations on
these symbols, originated in [66] and [54], where scalar extension and factorization
hierarchies are designed to recognize correlations of the bilocal network. In the
language of this survey, polynomial Bell inequalities for classical correlations of the
bilocal network are then given by moment polynomials 𝑝 = 𝑝(𝜍 (𝑎𝑖𝑏 𝑗𝑐𝑘) : 𝑖, 𝑗 , 𝑘)
that are nonnegative subject to relations

𝑎2
𝑖 = 𝑎𝑖 , 𝑏

2
𝑗 = 𝑏 𝑗 , 𝑐

2
𝑗 = 𝑐𝑘 , (projections)

𝑎𝑖 , 𝑏 𝑗 , 𝑐𝑘 commute, (classical & no communication)

𝜍 (𝑎𝑐) = 𝜍 (𝑎)𝜍 (𝑐) for all products 𝑎, 𝑐 of 𝑎𝑖 , 𝑐𝑘 . (bilocality)

On the other hand, examples of polynomial Bell inequalities for quantum correlations
are given by state polynomials 𝑝 = 𝑝(𝜍 (𝑎𝑖𝑏 𝑗𝑐𝑘) : 𝑖, 𝑗 , 𝑘) that are nonnegative subject
to relations

𝑎2
𝑖 = 𝑎𝑖 , 𝑏

2
𝑗 = 𝑏 𝑗 , 𝑐

2
𝑗 = 𝑐𝑘 , (projections)

𝑎𝑖𝑏 𝑗 = 𝑏 𝑗𝑎𝑖 , 𝑏 𝑗𝑐𝑘 = 𝑐𝑘𝑏 𝑗 , 𝑐𝑘𝑎𝑖 = 𝑎𝑖𝑐𝑘 , (no communication)

𝜍 (𝑎𝑐) = 𝜍 (𝑎)𝜍 (𝑐) for all products 𝑎, 𝑐 of 𝑎𝑖 , 𝑐𝑘 . (bilocality)

By the refutation of Connes’ embedding problem [37], there exist (linear) Bell in-
equalities for quantum models as defined above that do not correspond to such
nonnegative state polynomials. However, the latter correspond to polynomial Bell
inequalities for correlations of suitably generalized quantum models (see [51] for
a comparison of various considered models). By translating polynomial Bell in-
equalities in the language of moment and state polynomials, one can then use the
convergent SDP hierarchy from Section 5 to establish their validity.

There are (at least) two other SDP hierarchies that are tailored to Bell inequalities
arising from quantum networks. The so-called polarization and inflation hierarchies
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[50, 51, 54] are based on techniques arising from quantum information theory. A
fundamental tool for proving their convergence is a quantum version of de Finetti
theorem in quantum probability [70, 12, 6, 50]. Let us very roughly compare the SOS
hierarchy of Section 5 with the polarization/inflation hierarchy. To handle operator
variables, all hierarchies rely on the GNS construction. The differences arise from
the treatment of pure state constraints. Whereas the SOS hierarchy views state
symbols as commuting indeterminates, the polarization and inflation hierarchies
explore the symmetry in pure state constraints, and use polarization to replace them
by linear constraints with permutation invariance. The relation between these two
approaches is analogous to the identification of the quotient of a tensor product space
modulo commutation relations on one hand with the subspace of symmetric tensors
on the other hand. While the SOS hierarchy then relies on the Kadison-Dubois
representation theorem for positivity of commutative polynomials, the convergence
of the polarization/inflation hierarchy is derived from the quantum de Finetti theorem.

For the bilocal network, as well as for star networks, the relationship between
various quantum models of correlations is now well-understood [51, 54]. However,
distinguishability for networks beyond this family remains an open problem.

6.3 Quantum uncertainty relations

Uncertainty among noncommuting observables is a fundamental feature of quantum
mechanics. The most well-known is perhaps the Heisenberg uncertainty relation,
stating that the standard deviations of the position and the momentum of a particle
cannot both be known with arbitrary precision,

Δ𝑥 · Δ𝑝 ≥ ℏ
2𝜋
.

Here Δ2𝐴 = ⟨𝐴2⟩ − ⟨𝐴⟩2 is the variance of an observable 𝐴, and ⟨𝐴⟩ = tr(𝜚𝐴) is its
expectation value with respect to some state 𝜚. Similar relations hold for observables
in a finite Hilbert space. The question then is: how can one derive uncertainty relations
- also among more than two observables - in a systematic manner?

An interesting scenario is that of a set of unitary and hermitian observables
{𝐴𝑖}𝑛𝑖=1, 𝐴†

𝑖
= 𝐴𝑖 , 𝐴𝑖𝐴†

𝑖
= 𝐼, that mutually either commute or anti-commute, 𝐴𝑖𝐴 𝑗 =

(−1)𝜒𝑖 𝑗 𝐴 𝑗𝐴𝑖 with 𝜒𝑖 𝑗 ∈ {0, 1}. Define the quantity

𝛽 = sup𝜚,𝐴𝑖 ,H

𝑛∑︁
𝑖=1

⟨𝐴𝑖⟩2,

where the optimization is over all states 𝜚 and observables 𝐴𝑖 on Hilbert spaces
H that support the defining relations of the 𝐴𝑖 . Then a tight additive uncertainty
relation is as follows:
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𝑛∑︁
𝑖=1

Δ𝐴2
𝑖 ≥ 𝑛 − 𝛽.

Our aim is now to provide efficiently computable upper bounds on 𝛽.
Let 𝜗(𝐺) be the Lovász theta number of a graph 𝐺 [17] 2,

𝜗(𝐺) =
{

max tr(𝑋)
�� (

1 𝑥𝑇
𝑥 𝑋

)
⪰ 0, 𝑥𝑖 = 𝑋𝑖𝑖 ∀𝑖, 𝑋𝑖 𝑗 = 0 if 𝑖 ∼ 𝑗

}
.

It is known that 𝜗 upper bounds the independence number 𝛼 of a graph, providing an
SDP approximation to a quantity that is NP-hard to compute. The relations among
the observables can be encoded into an anti-commutativity graph𝐺 defined by 𝑖 ∼ 𝑗

if 𝐴𝑖𝐴 𝑗 = −𝐴 𝑗𝐴𝑖 and 𝑖 ≁ 𝑗 otherwise. In [21] it is shown that 𝛽 < 𝜗(𝐺), implying
the additive uncertainty relation 3

𝑛∑︁
𝑖=1

Δ2𝐴𝑖 ≥ 𝑛 − 𝜗(𝐺).

Let us show how this bound naturally fits into a complete SDP hierarchy origi-
nating from the state polynomial optimization framework [58]. Given a unital linear
functional 𝐿 acting on state polynomials, consider a state Hankel matrix Γ(𝐿) in-
dexed by ⟨𝐴†

0⟩𝐴0, ⟨𝐴†
1⟩𝐴1, . . . , ⟨𝐴†

𝑛⟩𝐴𝑛, where we set 𝐴0 = 𝐼. Its entries read

Γ𝑖 𝑗 (𝐿) = 𝐿 (⟨𝐴†
𝑖
⟩⟨𝐴 𝑗⟩⟨𝐴𝑖𝐴†

𝑗
⟩).

Note that Γ(𝐿)00 = 1, Γ(𝐿)𝑖0 = Γ(𝐿)𝑖𝑖 ∀𝑖, and Γ(𝐿) ⪰ 0. As a consequence,

max
Γ

𝑛∑︁
𝑖=1

Γ𝑖𝑖 s. t. Γ00 = 1, Γ𝑖0 = Γ𝑖𝑖 ∀𝑖, Γ ⪰ 0

bounds 𝛽 from above. If Γ achieves the maximum in the above optimization problem,
then so does (Γ + Γ𝑇 )/2. We thus can additionally impose that Γ𝑖 𝑗 = 0 if 𝐴𝑖𝐴 𝑗 =
−𝐴 𝑗𝐴𝑖 (or if 𝑖 ∼ 𝑗 in terms of𝐺). The resulting optimization problem is then nothing
else than the Lovász theta number, with the corresponding bound

∑𝑛
𝑖=1⟨𝐴𝑖⟩2 ≤ 𝜗(𝐺)

given in [21]. The idea of [58] is that this efficiently computable bound on 𝜗 can
be strengthened by considering a hierarchy of state Hankel matrices: indexing by
products in ⟨𝐴†

𝑖
⟩𝐴𝑖 , 𝑖 = 0, . . . , 𝑛, with degrees at most 2𝑑 leads to the bound 𝛽 ≤ 𝜗𝑑

(see Table 1). More generally, there is a complete SDP hierarchy based on state
polynomial optimization to obtain quantum uncertainty relations.

The odd-hole inequalities strengthen the SDP formulation of the Lovász number
further: let 𝐻 ⊆ 𝐺 be a subset of vertices inducing an odd cycle 𝐶2𝑘+1. Then 4

2 Several equivalent formulations are known, see [46, 65].
3 A related bound ⟨∑𝑛

𝑖=1 𝑎𝑖𝐴𝑖 ⟩2 ≤ 𝜗 (𝐺) for all ||𝑎 ||2 = 1 in the context of optimizing fermionic
Hamiltonians is given in [26].
4 Note that the original argument in [58] is incomplete.
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Table 1 Upper bounds on 𝛽 for selected graphs of seven vertices. The lower bound is given by the
independence number 𝛼.

∑︁
𝑖∈𝐻

⟨𝐴𝑖⟩2 ≤
⌊
|𝐻 |
2

⌋
.

This can be seen by [84, Lemma 39] which shows that 𝛽(𝐶2𝑘+3) − 𝛽(𝐶2𝑘+1) ≤ 1,
where 𝐶ℓ is the cycle graph with ℓ vertices. Noting that 𝛽(𝐶3) = 1 yields the claim.

Table 1 shows bounds on 𝛽 for selected graphs of seven vertices. There are 43
non-isomorphic graphs with seven vertices for which 𝜗 < 𝛽. Combining the Lovász
number with the odd-hole inequalities, one obtains tight bounds on 18 of these. For
all but 10 graphs one has 𝛽 = 𝜗2; for all but 7 graphs one has 𝛽 = 𝜗3. This shows
the numerical effectiveness of these relaxations.

Finally, note the relation with the state polynomial optimization hierarchy: it is
clear that Γ is a principal submatrix of the state Hankel matrix at the second level
of the state polynomial hierarchy that is indexed by all state monomials of degree
at most two. Indexing the Hankel matrix with all state monomials of degree at most
𝑑 as explained above, one obtains a sequence of semidefinite upper bounds that
converges to 𝛽 as 𝑑 → ∞. Such hierarchy can easily be adapted to operators with
other defining relations, for example to Heisenberg-Weyl operators.

6.4 Bounds on quantum codes

Quantum error-correcting codes protect quantum information from noise and are
thought to play an indispensable role in quantum computing devices. The idea is to
encode a state 𝜚 ∈ B(C𝐾 ) into a subspace Q of an 𝑛-qubit system, so that for a given
noisy channel N(𝜚) = ∑

𝜇 𝐸𝜇 𝜚𝐸
†
𝜇 with

∑
µ 𝐸

†
𝜇𝐸𝜇 = I, there exists a decoding map

D satisfying D ◦N(𝜚) = 𝜚 for all 𝜚 on Q.
Consider the case where each Kraus operator 𝐸𝜇 of the noisy channel acts only

on few qubits non-trivially. For this, let E𝑛 be the 𝑛-qubit Pauli basis, formed by
𝑛-fold tensor products of the identity matrix 𝐼 and the three Pauli matrices

𝑋 =

(
0 1
1 0

)
, 𝑌 =

(
0 −𝑖
𝑖 0

)
, 𝑍 =

(
1 0
0 −1

)
.

Denote by wt(𝐸) the number of subsystems (coordinates) an operator 𝐸 ∈ E𝑛 acts
on non-trivially. For example, wt(𝑋 ⊗ 𝐼 ⊗ 𝑍) = 2.
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Now a quantum code can be entirely characterized by the subspace Q into which
the quantum information is encoded. The Knill-Laflamme conditions provide neces-
sary and sufficient conditions for a Q to be a quantum error correcting code [45]: a
subspace defined by a hermitian projection Π ∈ B((C2)⊗𝑛) of rank 𝐾 is a quantum
code of distance 𝛿, if and only if

Π𝐸𝜇𝐸𝜈Π = 𝑐𝜇𝜈Π,

for all 𝐸𝜇, 𝐸𝜈 ∈ E𝑛 with wt(𝐸†
𝜇𝐸𝜈) < 𝛿. A code with distance 𝛿 then is able to

correct all errors acting upon at most ⌊ 𝑛−1
2 ⌋ subsystems (and linear combinations

thereof). A code is pure if 𝑐𝜇𝜈 = 0 for all 𝐸𝜇, 𝐸𝜈 ∈ E𝑛 with 0 < wt(𝐸𝜇𝐸𝜈) < 𝛿. A
code is that is pure and has size 𝐾 = 1 is termed self-dual.

A fundamental problem in quantum coding theory is to determine for what
parameters ((𝑛, 𝐾, 𝛿)) a quantum code exists. A recent work shows that this can be
formulated as a state polynomial optimization problem [59]. The key insight is that,
given a Hermitian projection Π on (C2)⊗𝑛, the Knill-Laflamme conditions (6.4) can
be formulated as the condition

𝐾𝐵 𝑗 = 𝐴 𝑗 for all 0 < 𝑗 < 𝛿, (6)

where the weight enumerators 𝐴 𝑗 , 𝐵 𝑗 are given by

𝐵 𝑗 =
∑︁

𝐸∈E𝑛 ,wt(𝐸 )= 𝑗
tr(𝐸Π𝐸†Π),

𝐴 𝑗 =
∑︁

𝐸∈E𝑛 ,wt(𝐸 )= 𝑗
tr(𝐸Π)tr(𝐸†Π).

Clearly, the RHS of (6) is a state polynomial in 𝜚 = Π/𝐾 while the LHS is not.
However, the quantum MacWilliams identity allows to recover the 𝐵 𝑗 from the 𝐴 𝑗
through a polynomial transform [76]:

𝐵(𝑥, 𝑦) = 𝐴
(
𝑥 + 3𝑦

2
,
𝑥 − 𝑦

2

)
,

with 𝐴(𝑥, 𝑦) = ∑𝑛
𝑗=0 𝐴 𝑗𝑥

𝑛− 𝑗 𝑦 𝑗 and 𝐵(𝑥, 𝑦) = ∑𝑛
𝑗=0 𝐵 𝑗𝑥

𝑛− 𝑗 𝑦 𝑗 .
Thus a strategy to formulate a state polynomial optimization hierarchy for the

existence of quantum codes with given parameters ((𝑛, 𝐾, 𝛿)) emerges: optimize
over state Hankel matrices indexed by state words in elements of the Pauli basis E𝑛.
At level 𝑑, a linear combination of Hankel matrix entries yields approximate enu-
merators 𝐴(𝑑) and, with the help of the quantum MacWilliams transform, also the
approximate enumerators 𝐵 (𝑑) . In the limit 𝑑 → ∞ both 𝐴 𝑗 and 𝐵 𝑗 converge to enu-
merators from some state 𝜚. As a consequence one can impose the Knill-Laflamme
conditions (6) directly onto the hierarchy.

It remains to see that such hierarchy can be made complete: one needs to enforce
that the state 𝜚 in the state polynomial is proportional to a projection Π of rank
𝐾 (so to correspond to a subspace Q); and furthermore that Π acts on an 𝑛-qubit
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system. The constraint that 𝜚 = Π/𝐾 with Π a projection can be imposed by the
fact that the expression tr(𝜚ℓ) = tr(𝜂(1, . . . , ℓ)𝜚⊗ℓ) = 1/𝐾ℓ−1 for all ℓ ∈ N can
be expanded in terms of state polynomials with letters in E𝑛. Here (1, . . . , ℓ) ∈
𝑆ℓ is a cyclic permutation, and 𝜂 acts on ((C2)⊗𝑛)⊗ℓ by permuting its ℓ tensor
factors. The constraint that Π acts on an 𝑛-qubit system can be recovered through
a characterization of quasi-Clifford algebras by Gastineau-Hills [18]: every algebra
with 𝑚 generators satisfying 𝛼𝑖𝛼 𝑗 = (−1) 𝜉𝑖 𝑗𝛼 𝑗𝛼𝑖 , 𝜉𝑖 𝑗 ∈ {0, 1} and 𝛼2

𝑖
= 1 is

isomorphic to a direct sum of 𝑠-qubit systems with 𝑚 = 𝑟 +2𝑠 where 𝑟 is the number
of summands. Imposing the relations of the Pauli basis (𝑋𝑌 = 𝑖𝑍 , etc) onto the
state polynomial hierarchy then recovers the condition that Π acts on the 𝑛-qubit
space (C2)⊗𝑛.

The hierarchy indexed by the Pauli basis E𝑛 is too large to be practical at the
first level. It can nevertheless be made useful: following the strategy by [20], an av-
eraging over distance- and identity-preserving automorphisms of the graph formed
by the Pauli basis and a subsequent symmetry-reduction using the quaternary Ter-
williger algebra excludes quantum codes with parameters ((7, 1, 4)) 5, ((8, 9, 3))2, and
((10, 5, 4))2 [59].

Quantum Lovász and Delsarte bounds

From the hierarchy sketched in the previous section, quantum Lovász and Delsarte
bounds on the existence of quantum codes can be derived. For this we consider the
same construction as done in Section 6.3, but for a feasibility instead of maximization
problem. Given a unital linear functional 𝐿 acting on state polynomials, consider a
state Hankel matrix Γ(𝐿) indexed by ⟨𝐸†

𝑖
⟩𝐸𝑖 with 𝐸𝑖 ∈ E𝑛, where we set 𝐸0 = 𝐼. Its

entries read

Γ𝑖 𝑗 (𝐿) = 𝐿 (⟨𝐴†
𝑖
⟩⟨𝐴 𝑗⟩⟨𝐴𝑖𝐴†

𝑗
⟩).

Note that Γ(𝐿)00 = 1, Γ(𝐿)𝑖0 = Γ(𝐿)𝑖𝑖 ∀𝑖, and Γ(𝐿) ⪰ 0. If Γ(𝐿) has this structure,
then so does (Γ(𝐿) + Γ(𝐿)𝑇 )/2. We thus can additionally impose that Γ(𝐿)𝑖 𝑗 = 0 if
𝐸𝑖𝐸 𝑗 = −𝐸 𝑗𝐸𝑖 .

The interesting aspect of this construction is the fact that the set of matrices Γ

with this structure corresponds to the Lovász theta body for a graph 𝐺 with vertex
set E𝑛 \ 𝐼, where 𝑖 ∼ 𝑗 if 𝐸𝑖𝐸 𝑗 = −𝐸 𝑗𝐸𝑖 6:

TH(𝐺) =
{

diag(𝑋)
�� (

1 𝑥𝑇
𝑥 𝑋

)
⪰ 0, 𝑥𝑖 = 𝑋𝑖𝑖 ∀𝑖, 𝑋𝑖 𝑗 = 0 if 𝑖 ∼ 𝑗

}
.

5 While the non-existence of the ((7, 1, 4)) code was previously achieved through a analytical
method [34], this approach provides a numerical infeasibility certificate.
6 Compare this with the Lovász theta number of Section 6.3, which is the maximization of the sum
of TH(𝐺) .
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In the case of self-dual quantum codes (𝐾 = 1 and pure), one additionally needs
to impose the condition Π𝐸

†
𝑖
𝐸 𝑗Π = 0 if 0 < wt(𝐸†

𝑖
𝐸 𝑗 ) < 𝛿. Thus for a self-dual

code of block-length 𝑛 and distance 𝛿 define its confusability graph with vertex set
E𝑛 \ 𝐼 as:

𝑖 ∼ 𝑗 if 𝐸𝑖𝐸 𝑗 = −𝐸 𝑗𝐸𝑖 or 0 < wt(𝐸†
𝑖
𝐸 𝑗 ) < 𝛿,

𝑖 ∼ 𝑖 if 0 < wt(𝐸𝑖) < 𝛿.

Note the appearance of loops in the graph, arising from the case when 𝐸 𝑗 = 𝐼.
We now impose normalization of the state (𝐾 = 1), which leads to the condition∑
𝑖 Γ𝑖𝑖 = 2𝑛. As a consequence, the existence of a self-dual quantum code with

parameters ((𝑛, 1, 𝛿)) can be bounded by a feasibility problem over the theta body
TH(𝐺). A further relaxation of this feasibility program is the necessary condition
2𝑛 ≤ 𝜗(𝐺) + 1 for a code to exist, where 𝜗 is the Lovász theta number introduced
in Section 6.3. This bound already excludes the existence of a ((4, 1, 3)) quantum
code 7.

Similarly to the classical case, one obtains a quantum Delsarte bound by averaging
over distance-preserving anti-commutativity graph automorphisms of a minor vari-
ation of this quantum Lovász bound. It states that if a quantum code with parameters
((𝑛, 1, 𝛿)) exists, then the following set is non-empty:{

𝑎 𝑗

��� 𝑎0 = 1, 𝑎 𝑗 = 0 for 1 < 𝑗 < 𝛿,

𝑛∑︁
𝑘=0

𝑎 𝑗 = 2𝑛,

𝑎 𝑗 ≥ 0 and
𝑛∑︁
𝑖=0

𝐾 𝑗 (𝑖)𝑎𝑖 ≥ 0 for 0 ≤ 𝑗 ≤ 𝑛
}
,

where 𝐾 𝑗 denotes the quarternary Krawtchouk polynomial defined by 𝐾 𝑗 (𝑖) :=∑𝑖
𝛼=0 (−1)𝛼3 𝑗−𝛼

( 𝑖
𝛼

) ( 𝑛−𝑖
𝑗−𝛼

)
[52].
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23, 67 – 100 (2020)
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42. Klep, I., Pascoe, J.E., Volčič, J.: Positive univariate trace polynomials. Journal of Algebra 579,

303–317 (2021)
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44. Klep, I., Špela Špenko, Volčič, J.: Positive trace polynomials and the universal Pro-

cesi–Schacher conjecture. Proceedings of the London Mathematical Society 117 (2017)
45. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Physical Review A 55,

900–911 (1997)
46. Knuth, D.E.: The sandwich theorem. Electronic Journal of Combinatorics 1 (1994)
47. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM

Journal on optimization 11(3), 796–817 (2001)
48. Lasserre, J.B.: Moments, positive polynomials and their applications, vol. 1. World Scientific

(2009)
49. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In:

Emerging applications of algebraic geometry, pp. 157–270. Springer (2009)
50. Ligthart, L.T., Gachechiladze, M., Gross, D.: A convergent inflation hierarchy for quantum

causal structures. Communications in Mathematical Physics 401, 2673–2714 (2021)
51. Ligthart, L.T., Gross, D.: The inflation hierarchy and the polarization hierarchy are complete

for the quantum bilocal scenario. Journal of Mathematical Physics (2022)



State, trace, and moment polynomials 27

52. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North Holland (1981)
53. Magron, V., Wang, J.: Sparse polynomial optimization: theory and practice. World Scientific

(2023)
54. Marc-Olivier Renou Xiangling Xu, L.T.L.: Two convergent npa-like hierarchies for the quantum

bilocal scenario. arXiv:2210.09065 (2024)
55. Marshall, M.: Positive polynomials and sums of squares. 146. American Mathematical Soc.

(2008)
56. Marshall, M.: Positive polynomials and sums of squares, Mathematical Surveys and Mono-

graphs, vol. 146. American Mathematical Society, Providence, RI (2008)
57. McCullough, S.: Factorization of operator-valued polynomials in several non-commuting vari-

ables. Linear Algebra and its Applications 326(1-3), 193–203 (2001)
58. Morán, M.B., Huber, F.: Uncertainty relations from state polynomial optimization. Physical

Review Letters 132(20) (2024)
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